• 제목/요약/키워드: Water velocity

검색결과 3,387건 처리시간 0.029초

PIV를 이용한 회류수조의 유속 분포 교정에 관한 연구 (Calibration of Water Velocity Profile in Circular Water Channel Using Particle Image Velocimetry)

  • 서성부;정광효
    • 한국해양공학회지
    • /
    • 제25권4호
    • /
    • pp.23-27
    • /
    • 2011
  • This experimental study was performed to find rpms of the impeller and the surface flow accelerator to make a uniform velocity vertical distribution in the circular water channel. PIV technique was employed to measure the water velocity profiles into the water depth from the free surface. The number of instantaneous velocity profiles was decomposed into mean and turbulence velocity components, and the distribution of velocity fluctuation and turbulence intensity were computed for each experimental condition. From these results, the velocity uniformity was quantitatively determined to present the flow quality in the measuring section of the circular water channel. It has been shown that the proper operation of the surface flow accelerator would make the uniform velocity profiles and reduce the velocity fluctuation near the free surface.

푸새직물의 흡수속도에 관한 일연구 (A Study on the Water Absorption Velocity of Sized Fabrics)

  • 오화자
    • 대한가정학회지
    • /
    • 제25권2호
    • /
    • pp.31-38
    • /
    • 1987
  • This paper aims to examine the velocity of water absorption of cotton, hemp, and T/C fabrics sized by rice, wheat, potato, corn flour and pp.V.A.. Experimental variables such as the concentration of sizing agents, the moisture regain of unsized fabrics and the ironing temperature showed the following results. 1. When the fabrics were sized, the velocity of water absorption increased according to the order of corn, rice, potato, wheat flour and pp.V.A. for cotton fabrics, of corn, potato, rice, wheat flour and pp.V.A. for hemp fabrics, and of corn, wheat, rice, potato flour and pp.V.A. for T/C fabrics; corn flour showed the highest velocity of water absorption and pp.V.A. did the lowest among all the others mentioned above. 2. The higher fabric density, the higher velocity of water absorption. The finer the count of fabric yarn, the higher velocity of water absorption. 3. The material of sized fabrics most affected the velocity of water absorption than other factors of those. 4. To a certain extent, the higher the concentration of sizing agent, the higher the velocity of water absorption. 5. The fabrics with moisture regain of 20% before sizing showed the highest velocity of water absorption. 6. The ironing temperature after sizing fabrics mentioned below showed the highest velocity of water absorption; 180$^{\circ}C$ for cotton, 200$^{\circ}C$ for hemp, and 160$^{\circ}C$ for T/C fabrics.

  • PDF

Flow characteristics after water inrush from the working face in karst tunneling

  • Wu, J.;Li, S.C.;Xu, Z.H.;Pan, D.D.;He, S.J.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.407-419
    • /
    • 2018
  • In order to investigate flow characteristics after water inrush from the working face in process of karst tunnel construction, numerical calculation for two class case studies of water inrush is carried out by using the FLUENT software on the background of Qiyueshan tunnel. For each class water inrush from the tunnel face, five cases under different water-inrush velocity are simulated and researched. Three probing lines are selected respectively in the left tunnel, cross passage, right tunnel and in the height direction of the tunnel centerline. The variation characteristics of velocity and pressure on each probing line under the five water-inrush velocities are analyzed. As for the selected four groups probing lines in the tunnels, the change rules of velocity and pressure on each group probing lines under the same water-inrush velocity are discussed. Finally, the water flow characteristics after inrush from the tunnel face are summarized by comparing the case studies. The results indicate that: (1) The velocity and pressure change greatly at the intersection area of the cross passage and the tunnels. (2) The velocity nearby the tunnel side wall is the minimum, while it is the maximum in the middle position. (3) The pressure value of every cross section in the tunnels is basically fixed. (4) As water-inrush velocity increases, the flow velocity and pressure in the tunnels also increase. The former is approximately proportional to their respective water-inrush velocity, while the latter is not. The research results provide a theoretical basis for making scientific and rational escape routes.

유속조건에 따른 수중 생태계내 소형어류의 동물플랑크톤 포식 행동 변화에 관한 연구 (Effect of Water Velocity on Foraging Behavior of Planktivore on Zooplankton in Aquatic Ecosystems)

  • 박배경;박석순
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.79-83
    • /
    • 2005
  • Foraging behaviour of false dace, Pseudorasbora parva, was investigated in water flowing at various velocities with the existence of a cavity for rest. The pursuit comprised three succeeding processes such as, approaching, chasing and attacking. Angles between the fish body and the water flow direction and swimming speeds increased in the latter stages of approaching, chasing and attacking. All pursuit angles, swimming speeds and distances increased with flow velocity and peaked at the flow velocity of 7 cm/sec. At higher velocities, however, the fish avoided the use of much energy against the large drag force. The probability of capture and the feeding rate steadily decreased with increasing flow velocity. Under the fast flow, the fish adjusted their swimming speed to get the optimum velocity relative to the flowing water for the energetic budget. Fish spent more time in the cavity as flow velocity increased to avoid the energy expenditure necessitated by the high velocity.

물 혼합에 의한 메탄-공기 예혼합기의 연소(2)-연소속도 비교 (Combustion in Methane-Air Pre-Mixture with Water Vapor(2)-Comparison of Burning Velocity)

  • 권순익
    • 한국산업융합학회 논문집
    • /
    • 제12권3호
    • /
    • pp.137-142
    • /
    • 2009
  • Burning velocity of methane-air mixtures with water vapor have been measured to study the process of flame propagation using schlieren photographs and computation. The computations were carried out for the burning velocity using premix code of Chemkin program to compare the experimental results. The quantity of water vapor contained were changed 5% and 10% of total mixtures, and equivalence ratio of mixtures between 0.8 and 1.2 were tested under the ambient temperature 323K and 373K. The results showed little difference between these two methods, the burning velocity was decreased by increasing the water vapor contents due to the interruption of flame development. And, the effect of ambient temperature was less significant by increasing the water contents on the burning velocity.

  • PDF

전자파를 이용한 하천수 표면유속 측정 (Velocity Measurement of Stream Water Surface Using Microwave)

  • 이상호;이한구;김우구
    • 물과 미래
    • /
    • 제28권6호
    • /
    • pp.183-191
    • /
    • 1995
  • 하천의 홍수유속을 측정하기 위하여, 전자파를 이용한 물 표면 유속 측정체계를 개발하였다. 현재의 개발단계는 실험용 유속측정체계 수준이다. 전자파 표면유속계는 초고주파(micro-wave) 전자파의 도플러 효과를 이용한다. 이는 전자파의 발진과 안테나를 통한 반사파 수신, 차주파수 신호의 추출로 이루어지는 RF부분과, 차주파수 신호의 A/D변환 및 고속 후리에 변환 등으로 이루어지는 신호처리부로 구성된다. 구성된 유속측정 체계로 교량 아래 유속, 대청 조정지댐 방수로 등에서 측정 실험하였고 선박해양공학 연구센터의 선박 실험용 선형수조에서 검증 실험을 수행하였다. 검증결과 A/D 변환기 제작오류에서 발생된 4% 오차 이외에 측정환경의 문제에서 비롯된 몇 %의 오차가 혼재되어 있음이 분석되었다. 그러나 0.5~3.5 m/s 유속을 측정한 결과, 기준속도와 측정속도간 선형성이 우수하고 홍수 유속 측정에 매우 유용한 장비임이 입증되었다. 향후 소형화, 경량화를 수행하고 바람, 물 표면의 불규칙 유동에 의한 영향을 분석하여 신호처리 방안을 마련하는 재제작 (re-engineering) 과정이 요구된다.

  • PDF

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

자연하천에서 무차원 유속분포-지표유속법을 이용한 유량산정 (Discharge Estimation Using Non-dimensional Velocity Distribution and Index-Velocity Method in Natural Rivers)

  • 김창완;이민호;정성원;유동훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.855-859
    • /
    • 2007
  • It is essential to obtain accurate and highly reliable streamflow data for water resources planning, evaluation and management as well as design of hydraulic structures. A new discharge estimation method, which is named 'non-dimensional velocity distribution and index-velocity method,' was proposed in this research. This method showed very close channel discharges which were calculated with the exiting velocity-area method. When velocity-area method is used to estimate channel discharge, it is required to observe point velocities at every desired point and vertical using a current meter like Price-AA. However 'non-dimensional velocity distribution and index-velocity method' is used, it become optional to observe point velocities at every desired point and vertical. But this method can not be applied for the cases of very complex and strongly asymmetric channel cross-sections because non-dimensional velocity distribution by entropy concept may be quite biased from that of natural rivers.

  • PDF

낙동강 수계의 식물플랑크톤 침강속도 (Settling Velocity of Phytoplankton in the Nakdong-River)

  • 정유경;김범철;신명선;박주현
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.807-813
    • /
    • 2007
  • Settling velocity is one of major parameters determining algal biomass in water quality modeling. In this study, the settling velocity of phytoplankton was measured in reservoir and stream sites of the Nakdong River, Korea. Settling velocities of various phytoplankton species were determined by measuring algal cell biomass settled in a sedimentation cylinder. Mean settling velocities were $0.22m\;day^{-1}$ in reservoir sites and $0.33m\;day^{-1}$ in stream sites, which were relatively higher compared with other default values suggested by water quality models (e.g. $0.1m\;day^{-1}$ in CE-QUAL-W2). The lower settling velocity in reservoirs than in stream implies the adaptation of phytoplakton to low turbulence in lentic environments. Cyanobacteria showed lower settling velocity ($0.2m\;day^{-1}$) than diatoms ($0.3m\;day^{-1}$), and this phenomenon may have resulted from buoyancy mechanisms of cyanobacteria. Cell volume did not show a significant correlation with settling velocity in this study, implying that conformation factors of colonies or other factors had large effects on settling velocity of algal cells as well as cell size. The result of this study may suggest proper coefficients of settling velocity of phytoplankton in the calibration of water quality model.

슬러지침전속도를 고려한 새로운 슬러지침전특성지표의 설정에 관한 연구 (New Sludge Settling Characteristic Index Considering Sludge Settling Velocity)

  • 박석균;강선홍;김동하
    • 상하수도학회지
    • /
    • 제20권3호
    • /
    • pp.451-460
    • /
    • 2006
  • While sludge settles down in a batch column, sludge concentration becomes high. Sludge concentration change is one of the most critical causes of the sludge settling velocity variation. Therefore, sludge concentration change causes sludge index to change. SVI is more sensitive than other sludge indexes to the change of sludge concentration. And if sludge-water interface has reached final height within 30minutes, SVI is not suitable for prediction of sludge settling characteristic, Therefore, SVIs of each sludge are, in some cases, different although each sludge has the same settling velocity. But SVI has been widely used to interpret sludge settling characteristic by a simple testing method. This work has two purposes. The first purpose is to predict sludge settling velocity by using sludge-water interface settling velocity. And the second purpose is to develop new sludge settling characteristic index to exactly interpret sludge settling characteristic by overcoming the limit of SVI.