• Title/Summary/Keyword: Water vapor transmission

Search Result 129, Processing Time 0.025 seconds

A Study of physical energy and water vapor transmission rate of carbon films synthesized by pulse magnetron sputtering (펄스 마그네트론 스퍼터링으로 합성된 카본 박막의 수분 투습도와 물리적 에너지와의 상관관계에 대한 고찰)

  • Jin, Su-Bong;Kim, Seong-Il;Song, Du-Hun;Han, Jeon-Geon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.33-34
    • /
    • 2007
  • DLC를 포함한 탄소 박막은 우수한 특성으로 인해 세계적으로 많은 연구들이 진행 되고 있다. 본 연구에서는 탄소 박막의 산소 및 수분 차단 특성 및 광투과율의 특성과 플라즈마 변수와의 상관관계를 규명 하고자 하였으며, 이러한 상관관계를 Langmuir probe, UV-spectroscopy, MOCON 의 분석기구를 통하여 플라즈마 변수와 박막의 특성을 분석 하였으며, 수분 투과도는 4g/m$^2$/day까지 감소하는 결과를 얻었다.

  • PDF

Wavelet Power Spectrum Estimation for High-resolution Terahertz Time-domain Spectroscopy

  • Kim, Young-Chan;Jin, Kyung-Hwan;Ye, Jong-Chul;Ahn, Jae-Wook;Yee, Dae-Su
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.103-108
    • /
    • 2011
  • Recently reported asynchronous-optical-sampling terahertz (THz) time-domain spectroscopy enables high-resolution spectroscopy due to a long time-delay window. However, a long-lasting tail signal following the main pulse is often measured in a time-domain waveform, resulting in spectral fluctuation above a background noise level on a high-resolution THz amplitude spectrum. Here, we adopt the wavelet power spectrum estimation technique (WPSET) to effectively remove the spectral fluctuation without sacrificing spectral features. Effectiveness of the WPSET is verified by investigating a transmission spectrum of water vapor.

Design of Zero-Stress Encapsulation for Mechanical Stability of Flexible OLED Displays (유연 OLED 디스플레이의 기계적 안정성을 위한 제로 스트레스 봉지막 설계)

  • Jeong, Eun Gyo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.39-43
    • /
    • 2022
  • In this paper, a study was conducted on encapsulation technology for high mechanical stability of flexible displays. First, unlike conventional encapsulation barrier that exclude cracks as much as possible for low water vapor transmission rate (WVTR), mechanical properties were improved by using a defect suppression mechanism introduced with crack arresters. The zero-stress encapsulation barrier optimizes the residual stress of the thin film based to improve the internal mechanical stability. The zero-stress encapsulation barrier was applied to the organic light emitting diodes (OLEDs) to confirm its characteristics and lifetime. Due to improved internal mechanical stability, it has a longer lifetime more than 35% compared to conventional encapsulation technologies. As the zero-stress encapsulation barrier proposed in this study does not require additional deposition process, it is not difficult to apply it. Based on various advantages, it is expected to play an important role in flexible displays.

Changes in Waterproofness and Breathability after Repeated Laundering and Durability of Electrospun Nanofiber Web Laminates (전기방사한 나노섬유 웹 라미네이트 소재의 반복 세탁에 따른 투습방수 성능 변화 및 내구성)

  • Lee, Kyung;Yoon, Bo-Ram;Lee, Seung-Sin
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.122-129
    • /
    • 2012
  • To develop a waterproof breathable material, we fabricated three kinds of nanofiber web laminates using a massproduced electrospun nanofiber web with different substrates and layer structures. The waterproofness and breathability of nanofiber web laminates were evaluated after repeated launderings and compared with those of conventional waterproof breathable fabrics currently in use, including densely woven fabric, microporous membrane laminated fabric, and coated fabric. The durability of nanofiber web laminates, including adhesion strength, abrasion resistance, tensile strength, and tearing strength, was also assessed and compared with those of conventional waterproof breathable fabrics. The water vapor transmission of nanofiber web laminates increased slightly after repeated launderings, whereas the air permeability somewhat decreased after launderings but still maintained an acceptable level of air permeability. Laundering reduced the resistance to water penetration of nanofiber web laminates, which implies that laminating techniques or substrate materials that could support waterproofness of the laminated structure should be explored. The adhesion strength, abrasion resistance, tensile strength, and tearing strength of nanofiber web laminates were in a range comparable to conventional waterproof breathable materials.

Study on the Moisture Sorption Characteristics of Seasoned Dried Laver (조미 건조김의 흡습특성에 관한 연구)

  • 임종환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.4
    • /
    • pp.476-483
    • /
    • 1993
  • The moisture sorption characteristics of commercially produced seasoned dried layer (Porphyra yezoensis) was investigated by measuring sorption isotherms. The laver and two kinds of desiccant (silica gel and zeolite based desiccant) were used at temperatures of 30, 40 and 5$0^{\circ}C$ respectively using the method of saturated salt solution. Time to reach the equilibrium moisture content at each temperature and relative humidity varied from 4~6hr for the laver to 20~25hr for the silica gel and 43~46hr for the zeolite. The isotherms of the layer and the desiccants showed the characteristic sigmoidal curve. Monomolecular layer moisture content calculated using the BET equation at each temperature (30, 40, 5$0^{\circ}C$) were 5.26, 4.46 and 3.49% (d.b.) for the laver, 17.32, 15.24 and 12.89% (d.b.) for the silica gel, 16.89, 14.92 and 14.44% (d.b.) for the zeolite, respectively, Both desiccants showed higher values of the monomolecular layer moisture content than the laver. In all cases, the monomolerular layer moisture contents were decreased linearly as the temperature was increased in the experimental ranges. Water vapor transmission rate of the packaged material was also influenced by the temperature, which could be explained by the Arrhenius equation.

  • PDF

The Study of Water Resistance and Water/Oxygen Barrier Properties of Poly(vinyl alcohol)/Water-soluble Poly(ethylene-co-acrylic acid) Blend Films (폴리비닐알콜/수분산 에틸렌-아크릴산 공중합체 블렌딩 필름의 내수성 및 수분/산소 차단성 연구)

  • Kim, Eun Ji;Park, Jae Hyung;Paik, In Kyu
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.217-221
    • /
    • 2012
  • Blending films having enhanced water-resistance and barrier properties were prepared using the mixtures of poly(vinyl alcohol) (PVA) aqueous solution and poly(ethylene-co-acrylic acid) (EAA) dispersed in water. Thermal-mechanical properties, contact angles, water-vapor transmission rates (WVTR) and oxygen transmission rates $(O_2TR)$ were measured with the content of EAA of blending films, and their water-resistance was evaluated. The tensile strength of the films was found to be $9.16{\sim}11.75\;kg/mm^2$ which showed no significant difference compared with that of PVA, and the hardness increased with the content of EAA. The glass transition temperature and melting temperature of the blending films were slightly improved. The film prepared with PVA/EAA (= 90/10), of which the swelling and solubility were measured to be 109 and 0%, respectively, showed improved water-resistance. The WVTR and $O_2TR$ for the PET film (thickness $50\;{\mu}m$) coated with PVA/EAA (= 90/10) film (thickness $2.5\;{\mu}m$) were measured to be $9.1\;g/m^2/day$ and $2.0\;cc/m^2/day$, respectively.

Low-Temperature Processed Thin Film Barrier Films for Applications in Organic Electronics (유기전자소자 적용을 위한 저온 공정용 배리어 박막 연구)

  • Kim, Junmo;An, Myungchan;Jang, Youngchan;Bae, Hyeong Woo;Lee, Wonho;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.402-406
    • /
    • 2019
  • Recently, semiconducting organic materials have been spotlighted as next-generation electronic materials based on their tunable electrical and optical properties, low-cost process, and flexibility. However, typical organic semiconductor materials are vulnerable to moisture and oxygen. Therefore, an encapsulation layer is essential for application of electronic devices. In this study, SiNx thin films deposited at process temperatures below 150 ℃ by plasma-enhanced chemical vapor deposition (PECVD) were characterized for application as an encapsulation layer on organic devices. A single structured SiNx thin film was optimized as an organic light-emitting diode (OLED) encapsulation layer at process temperature of 80 ℃. The optimized SiNx film exhibited excellent water vapor transmission rate (WVTR) of less than 5 × 10-5 g/㎡·day and transmittance of over 87.3% on the visible region with thickness of 1 ㎛. Application of the SiNx thin film on the top-emitting OLED showed that the PECVD process did not degrade the electrical properties of the device, and the OLED with SiNx exhibited improved operating lifetime

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Moisture Absorption Characteristics of Pt/Nafion Membrane for PEMFC Prepared by a Drying Process (건식법에 의해 제조한 PEMFC용 Pt/나피온 막의 흡습 특성)

  • Lee, Jae-Young;Lee, Hong-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.310-315
    • /
    • 2012
  • A simple drying process was developed for the preparation of a Pt/Nafion self-humidifying membrane to be used for a proton-exchange membrane fuel cell (PEMFC). Platinum (II) bis (acetylacetonate), $Pt(acac)_2$ was sublimed, penetrated into the surface of a Nafion film and then reduced to Pt nanoparticles simultaneously without any support of a reducing agent in a glass reactor at $180^{\circ}C$ for 15 min. The process was carried out in $N_2$ atmosphere to prevent the oxidation of Pt nanoparticles at high temperature. The morphology and distribution of the Pt nanoparticles were observed by transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), and we found that the average Pt particle size was ca. 3.7 nm, the penetration depth was ca. $17{\mu}m$. Almost all Pt nanoparticles were formed just beneath the surface and the number density decreased rapidly as the penetration depth increased. To estimate water absorption characteristics of the Nafion membranes, water uptake at an isothermal condition was measured by dynamic vapor sorption (DVS), and it was found that water uptake of the Pt/Nafion membrane was higher than that of the neat Nafion membrane.

Flowable Oxide를 이용한 저온 Flexible OLED 박막봉지 제작

  • Yong, Sang-Hyeon;Kim, Dae-Gyeong;Kim, Hun-Bae;Jo, Seong-Min;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.249-249
    • /
    • 2012
  • 최근 주목받고 있는 Flexible Organic Light Emitting Diode (OLED) display에서는 Flexible 특성이 요구된다. 이는 현재 쓰이는 유리기판 대신 플라스틱기판으로 만들어야 가능하다. 하지만 플라스틱기판은 구성물질로 유기물을 사용하므로 수분과 산소의 투과에 매우 취약하다. 이는 장시간 사용 시 기판 위에 제작된 소자성능저하를 야기하는 등의 소자 신뢰도에 치명적 결함을 갖게 하는 원인이 된다. 따라서 기판 위의 소자를 보호할 수 있는 봉지기술 개발이 필요한데 가장 잘 알려진 플라스틱 기판에 적합한 Barrier기술로 유기물과 무기물을 교대로 적층하는 기술[1] 등이 있다. 본 연구에서는 PE-CVD 공정기술을 이용한 Flowable Oxide 박막과 ALD 공정기술을 이용한 Al2O3 무기물 박막을 적층하여 봉지박막을 구성하려 한다. Flowable Oxide는 저온공정이 가능하며 높은 증착속도와 뛰어난 Gap fill 특성을 가지고 있는데 이는 플라스틱기판의 엉성한 분자구조를 치밀하게 만들 것으로 예상되며 표면의 Pin-hole 또한 쉽게 채우는 특성이 있다. 실험은 Polyethylene Naphthalate (PEN) film 위에 PE-CVD 공정을 이용하여 Flowable Oxide를 증착하고, 그 후에 ALD 공정을 이용하여 Al2O3을 적층한 것을 하나의 샘플로 하였다. 샘플의 분석은 Ca test를 이용한 Water Vapor Transmission rate(WVTR)과 FT-IR, FE-SEM을 이용하여 분석하였다. FT-IR로 박막의 구성요소를 확인 하고 FE-SEM으로 박막의 Cross section image를 얻을 수 있었으며 또한 $4.85{\times}10^{-5}g/m^2$ day의 초기 WVTR 값을 얻을 수 있었다.

  • PDF