• Title/Summary/Keyword: Water usage

Search Result 736, Processing Time 0.027 seconds

Estimation of Optimum Capacity for Rainwater Storage Facilities based on Mass Balance and Economic Analysis (Mass-balance 및 경제성 분석에 의한 빗물저류시설 적정 규모 산정)

  • Kim, Youngmin;Lee, Sangho;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.2
    • /
    • pp.233-238
    • /
    • 2008
  • Recently, rainwater harvesting facilities have increasingly constructed mainly in elementary schools and government buildings. Nevertheless, few methods are available for efficient planning and design of rainwater harvesting facilities by considering the weather conditions and purpose of rainwater management in each site, which may lead to a construction of uneconomic facilities. The current method estimates the size of rainwater storage tank by multiplying the size of building or plottage with a certain ratio and has many limitations. In this study, we first developed a method for planning and design of rainwater storage facilities using $Rainstock^{TM}$ model, which is based on mass balance, and economic analysis. Then, the model was applied for the design of a rainwater harvesting facility in a building with the catchment area of $1,000m^2$. The model calculation indicated that the economic feasibility of rainwater harvesting depends on not only the size of storage tank but also the water usage rate. When the water usage rate is $1m^3/day$, the rainwater harvesting facility is not cost-effective regardless of the size of the storage tank. With increasing the water usage rate, the economical efficiency of the facility was improved for a specific size of the storage tank. Based on the model calculation, the optimum tank sizes for $5m^3/day$ and $10m^3/day$ of water usage rates were $24m^3$ and $57m^3$, respectively. It is expected that the model is useful for optimization of rainwater storage facilities in planning and designing steps.

Rainwater Quality Variations for the Effective Usage (효율적 우수이용을 위한 초기우수의 수질변화)

  • 이창수;지홍기
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.275-279
    • /
    • 2003
  • A water quality analysis of rainwater collected from catchment equipment(2m${\times}$1m) was conducted to determine its suitability for domestic purposes, in this study. As the results of analysis, the pH of rainwater was 6.3${\pm}$0.3, and the turbidity of rainwater was over the 5 times than drinking water guidelines. For the usage of rainwater as the domestic and drinking water, the rainwater is need to treat. The analysis value of BOD was about 3 mg/L and the values of heavy metal as the Pb, Cd, Fe, Mn, Cr$\sub$6/$\^$+/and Cu was satisfied with drinking guidelines. Overall results of analysis support the possibility of rainwater as the domestic and drinking water.

Curtailment of Water use Through the Integration of Process Waste Waters at the Standard Thermal Power Plant (표준화력발전소의 발전폐수 통합을 이용한 용수 사용량 절감)

  • Mun, Gyeong-Seok;Jang, Heui-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.437-443
    • /
    • 2006
  • The Water usage is relationship which is close with the administrative cost from industrial facility. It is not easy to reduce a water usage. This research is the optimization of the waste water quantity which process waste water integration of the standard thermal power plant in system operate time. The turbine rotates by force of the steam and it produces an electricity. Demineralization Water is manufacture purity manufacturing equipment and it is supplied in power plant channel. We knew a possibility of reducing from pure control process. When it is reduced the Back Washing time, Rinsing time of the gravity filter and the activated carbon filter. Also, It is possible even from regeneration phase in Condensate Polishing Demineralization System. In addition, There is also the water which the drain of the sampling water for watching the condition of power plant process will be able to use. Integrates these processes it will be able to reduce an annual 30,000 ton degree. The research is want to use the fundamental data for the water curtailment of the power plant.

Development of a Zero Discharge and Reuse System for Rural Areas (농촌지역을 위한 무방류 재이용시스템 개발)

  • Hong, Min;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.91-96
    • /
    • 2009
  • This study describes a zero discharge and reuse system developed for rural areas. The purpose of the system is decontamination of used irrigation water for down-stream usage and reuse of wastewater in rural villages for preventing water shortage problem expected to happen in near future. The system consists of anoxic, FES (Ferrous Electricity System), Oxic, Cralifier processes. The main feature of the system is to remove phosphorous by using Fe-ionizing module. Indoor experiments were undertaken with a trial product of the system to test its performance. The removal capacities of T-P, T-N, and BOD were examined. Also the proper time for the replacement of iron plate module was tested as well as the efficiency of T-P removal rate based on the usage of an automatic washing system for the iron plate. As results, the system showed very good water purification performances through obtaining the results of over 90% removal rates from T-P, BOD, and 67% from T-N. The proper time period for replacement of iron plate was maximum 2 years, and also efficiency of T-P removal rate found to be greatly influenced by the usage of an automatic washing system from the test.

A Study on How to Reduce the Amount of Groundwater Used in the Dry Season and Improve the Water Quality of the Base Runoff (갈수기 지하수 물 사용량 저감 및 기저유출 수질 개선 방안 연구)

  • Kang, Tae-Seong;Yang, Dong-Seok;Yu, Na-Yeong;Shin, Min-Hwan;Lim, Kyoung-Jae;Kim, Jong-Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.2
    • /
    • pp.27-35
    • /
    • 2022
  • Based on the current status of groundwater usage in the dry season through field surveys, this study tried to suggest countermeasures to reduce groundwater usage and to improve the water quality of baseflow from agricultural fields. For this purposes, basins with water curtain cultivation preceded were targeted where decreases of groundwater due to continuous use of groundwater in spring and winter annually observed. From monitoring groudwater usage of the study watershed, 130,058, 130,105 m3/day of water was pumped in during the water curtain cultivation period (October-February) in the Shindun, Seokwon watershed respectively. And the pilot application of the smart automated sensor-based water curtain cultivation system (smart WC system) developed in this study to reduce groundwater consumption has been conducted. As a result, the efficiency of the smart WC system when threshold temperature is set as 6.3 ℃ was 21.1% compared to conventional cultivation and efficiency increased as threshold temperature gets lower. Lastly, in this study, culvert drainage and Bio-filters were installed and rainfall monitoring was performed 15 times in order to analyze the baseflow securement and pollutant loads behavior. As a result, the test-bed with culvert drainage and Bio-filter installed together generated 61.4% more baseflow (4.974 m3) than the test-bed with only culvert drainage was installed (3.056 m3). However, the total pollutant load of all water quality contents (BOD, COD, T-N, TOC) except for the SS and T-P was found to be greater in the culvert drain and Bio-filter installed than in the culvert drain test-bed.

An Empirical Study of Hot Water Supply Patterns and Peak Time in Apartment Housing with District Heating System (공동주택의 급탕부하 지속시간 및 부하 패턴에 관한 실증연구)

  • Kim, Sung-Min;Chung, Kwang-Seop;Kim, Young-Il
    • Journal of Energy Engineering
    • /
    • v.21 no.4
    • /
    • pp.435-443
    • /
    • 2012
  • The combination of space shortage and the high population density concentrated in urban areas of South Korea has resulted in the growth of large-scale high-rise residential complexes, naturally affecting water and hot water usage patterns as well. But the current designs for water and hot water supply in South Korea rely mostly on international design standards and data calculated on site due to the severe shortage of basic data in relation to actual use, which result in the frequent problem of the under-or over-design of water and hot water supply. The following study measures the hot water supplier's conditions and the user's heat usage to realize the amount of time required for hot water supply load generation and the pattern of actual use in order to create basic data for effective hot water supply facility design and maintenance.

An Analysis of the Technical Efficiency of Industrial Water Input in Manufacturing (공업용수의 기술적 효율성 분석)

  • Min, Dong-Ki
    • Journal of Environmental Policy
    • /
    • v.8 no.4
    • /
    • pp.37-49
    • /
    • 2009
  • While water management policies in Korea have focused on industrial water demand during the last decade, the amount of industrial water usage has decreased significantly. This paper estimates the technical efficiency of industrial water in order to test whether the reduction of industrial water usage is a result of improving the level of technical efficiency of industrial water. This paper shows that the technical efficiency of industrial water use slightly decreased from 0.5183 in 1998 to 0.4853 in 2003. In addition, these estimates are much less than those of other inputs and so, there is still much room for reducing the amount of industrial water use through improving technical efficiency even though the average productivity of industrial water has improved during this period.

  • PDF

Assessment of Groundwater Quality for Irrigation and Agro-based Industrial Usage in Selected Aquifers of Bangladesh

  • Rahman, Md. Mokhlesur;Hoque, Syed Munerul;Jesmin, Sabina;Rahman, Md. Siddiqur;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • Groundwater sampled from 24 tube wells of three districts namely Sherpur, Gaibandha and Naogaon in Bangladesh was appraised for their water quality for irrigation and agro-based industrial usage. All waters under test were slightly alkaline to alkaline (pH = 7.2 to 8.4) in nature and were not problematic for crop production. As total dissolved solid (TDS), all groundwater samples were classified as fresh water (TDS<1,000 mg/L) in quality. Electrical conductivity (EC) and sodium adsorption ratio (SAR) values reflected that waters under test were under medium salinity (C2), high salinity (C3) and also low alkalinity (S1) hazard classes expressed as C2S1 and C3S1. As regards to EC and soluble sodium percentage (SSP), groundwater samples were graded as good and permissible in category based on soil properties and crop growth. All water samples were free from residual sodium carbonate (RSC) and belonged to suitable in category. Water samples were under soft moderately hard, hard and very hard classes. Manganese, bicarbonate and nitrate ions were considered as major pollutants in some water samples and might pose threat in soil ecosystem for long-term irrigation. For most of the agro-based industrial usage, Fe and Cl were considered as troublesome ions. On the basis of TDS and hardness, groundwater samples were not suitable for specific industry. Some water samples were found suitable for specific industry but none of these waters were suitable for all industries. The relationship between water quality parameters and major ions was established. The correlation between major ionic constituents like Ca, Mg, K, Na, $HCO_3$ and Cl differed significantly. Dominant synergistic relationships were observed between EC-TDS, SAR-SSP, EC-Hardness, TDS-Hardness and RSC-Hardness.

A Study on the Energy and Water Consumption and their Patterns as Vertical Locations of Apartment Housing Units (아파트 단위 세대의 수직 위치 별 에너지 및 물 사용 규모와 패턴에 관한 연구)

  • Song, Dong-Hun;Kim, Kyung-Tae;Lee, Seung-Jun;Shin, Hyun-Ik
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.33 no.12
    • /
    • pp.53-63
    • /
    • 2017
  • The purpose of this study is to present an integrated analysis for energy use and its patterns as vertical locations of the dwelling units in apartment buildings which are located in an urban area and constructed by a renowned contractor. In order to enhance the effectiveness of the method, the original data of electricity, water, and gas bills which directly reflect the energy use are sorted and analyzed into several groups as vertical locations in each building. And also, by use of comparing and contrasting the data on a monthly and yearly basis, the accuracy of analyses for seasonal energy use and its patterns is strengthened. Comparative analyses used in this study describe the results that vertical locations of dwelling units do not have much influence on electricity and water usage, but are closely related with gas usage for a heating season. According to the analysis of gas usage, the units on the ground and right above pilotis need enhancement in the insulations for heating to mitigate energy loss. Also, the analysis for the middle floor units in each group describe the fact that the gas usage of the units on the ground is consumes 1.5 times greater than that of the typical floors. Therefore, enhanced insulation strategies need to be considered against the adverse condition that the heat loss increases as the wall facing the outside air increases or as the wind velocity increases through the pilotis.

Analysis of Efficiency of Solar Hot Water System based on Energy Demand (에너지 수요처의 사용특성에 따른 태양열 급탕시스템의 효율분석)

  • Jun, Yong-Joon;Park, Kyung-Soon
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.5
    • /
    • pp.39-47
    • /
    • 2017
  • In a hot water system using solar energy, solar heat is not simply collected by the heat collecting plate, but by heat exchange between the solar collector (flat or vacuum type) and the hot water storage tank. Therefore, the amount of collected solar energy depends on the hot water usage patterns that determine the temperature of the thermal storage tank. Also, if the temperature of the hot water stored in the storage tank exceeds the dangerous temperature during the summer, the heat must be released for safety. If the temperature of the hot water in the storage tank is low, it is necessary to heat by the auxiliary heat source. In this study, three buildings are defined as hotel, swimming pool, and school facilities. And we calculated the released heat energy, auxiliary heat source, and pure storage heat energy based on different hot water usage patterns and installation angle of the solar collectors.