• 제목/요약/키워드: Water turnovers

검색결과 2건 처리시간 0.017초

환수량 조절을 통한 넙치(Paralichthys olivaceus) 육상 양어장의 전기 에너지 절감 효과 분석 (Analyse of the Electric Energy Savings Effects of Adjusting Water Turnover on Land-based Fish Farms Raising Olive Flounder Paralichthys olivaceus)

  • 김남리;박노백;최진;민병화
    • 한국수산과학회지
    • /
    • 제56권5호
    • /
    • pp.716-720
    • /
    • 2023
  • This study was designed to analyze the effects of reducing water turnover in olive flounder Paralichthys olivaceus farms, focusing on olive flounder growth, decreasing electricity costs, and developing measures to ensure business stability. Daily water turnover was set at 18 in the control group and six in the experimental group. Juvenile fish were reared for 12 months. No significant differences in mean weight were observed between groups until five months. After five months, the mean weight of the control group grew significantly faster than that of the experimental group. Maintaining water turnovers leverl at six turnovers for the first five months after stocking juvenile fish and then increasing water turnover resulted in a 34.4% reduction in electricity costs compared to the control group. This approach presents a potential method to enhance the profitability of olive flounder farms and ensure stable productivity and profitability without sacrificing olive flounder growth.

Manganese treatment to reduce black water occurrence in the water supply

  • Kim, Jinkeun
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.230-236
    • /
    • 2015
  • 26 multi-regional water treatment plants (WTPs) were investigated, to determine the characteristics of manganese (Mn) concentration and removal in Korea. Mn concentrations of raw water in most WTPs were higher than the drinking water standard (i.e., 0.05 mg/L); thus, proper removal of Mn at the WTPs is needed. Mn concentration was generally higher in lakes than rivers due to seasonal lake turnovers. The Mn concentrations of treated water at 26 WTPs in 2012 were less than 0.05 mg/L, due to strict law enforcement and water treatment processes optimization. However, before 2010, those concentrations were more than 0.05 mg/L, which could have led to an accumulation of Mn oxides in the distribution system. This could be one of the main reasons for black water occurrence. Therefore, regular monitoring of Mn concentration in the distribution system, flushing, and proper Mn removal at WTPs are needed, to supply clean and palatable tap water.