• Title/Summary/Keyword: Water treatment plants

Search Result 1,077, Processing Time 0.028 seconds

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

Environmental Impact Assessment and Evaluation of Environmental Risks (환경영향평가와 환경위험의 평가)

  • Niemeyer, Adelbert
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.3
    • /
    • pp.41-48
    • /
    • 1995
  • In former times the protection of our environment didn't play an important role due to the fact that emissions and effluents were not considered as serious impacts. However, opinions and scientific measurements meanwhile confirmed that the impacts are more serious than expected. Thus measures to protect our earth has to be taken into consideration. A part of these measures in the Environmental Impact Assessment (EIA). One of the most important parts of the EIA is the collection of basic datas and the following evaluation. Experience out of the daily business of Gerling Consulting Group shows that the content of the EIA has to be revised and enlarged in certain fields. The historical development demonstrated that in areas in which the population and the industrial activities reached high concentration there is a high necessity to develop strict environmental laws and regulations. Maximum values of the concentration of hazardous materials were fixed concerning the emission into and water. Companies not following these regulations were punished. The total amount of environmental offences increased rapidly during the last decade, at least in Germany. During this development the public consciousness concerning environmental affairs increased as well in the industrialized countries. But it could clearly be seen that the development in the field of environmental protection went into the wrong direction. The technologies to protect the environment became more and more sophisticated and terms as: "state of the art" guided more and more to lower emissions, Filtertechnologies and wastewater treatment for example reached a high technical level-but all these sophisticated technologies has one and the same characteristic: they were end-of-the pipe solutions. A second effect was that this kind of environmental protection costs a lot of money. High investments are necessary to reduce the dust emission by another ppm! Could this be the correct way? In Germany the discussion started that the environmental laws reduce the attractivity to invest or to enlarge existing investments within the country. Other countries seem to be not so strict with controlling the environmental laws which means it's simply cheaper to produce in Portugal or Greece. Everybody however knows that this is not the correct way and does not solve the environmental problems. Meanwhile the general picture changes a little bit and we think it changes into the correct direction "End-of-the-pipe" solutions are still necessary but this word received a real negative touch and nobody wants to be brought into connection with this word received a real negative touch and nobody wants to be brought into connection with this word especially in connection with environmental management and safety. Modern actual environmental management starts in a different way. Thoughts about emissions start in the very beginning of the production, they start with the design of the product and modification of traditional modes of production. Basis of these ideas are detailed analyses of products and processes. Due to the above mentioned facts that the public environmental consciousness changed dramatically a continous environmental improvement of each single production plant has to be guarantied. This question is already an important question of the EIA. But it was never really checked in a wholistic approach. Environmental risks have to be taken into considerations during the execution of an EIA. This means that the environmental risks have to be reduced down to a capable risk-level. Environmental risks have to be considered within the phase of planning, during the operation of a plant and after shut down. The experience shows that most of the environmental relevant accidents were and caused by human fault. Even in highly protected plants the human risk-factor can not be excluded during evaluation of the risk-potential. Thus the approach of an EIA has to regard technical evaluations as well as organizational thoughts and the human factor. An environmental risk is a threat to the environment. An analysis of the risk concerning the organizational and human aspect however never was properly executed during an EIA. A possible solution could be to use an instrument as the actual EMAS (Environmental Management System) of the EC for more accurate evaluation of the impact to the environment during an EIA. Organizations or investors could demonstrate by an approved EMAS or even by showing their installment of EMAS that not only the technical level of the planned investment meets the requested standards but as well the actual or planned management is able to reduce the environmental impact down to a bearable level.

  • PDF

The Behaviour of Residues of Flonicamid and Metabolites in Sweet peppers (착색단고추 중 플로니카미드 및 그 대사산물의 잔류특성)

  • Son, Kyeong-Ae;Kwon, Hyeyoung;Jin, Yong-Duk;Park, Byeong Jun;Kim, Jinba;Park, Jung-Hwon;Kim, Taek-Kyum;Im, Geon-Jae;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.145-154
    • /
    • 2013
  • Flonicamid was a water-soluble and systemic insecticide. It was applied to control neonicotinod pesticide-resistant cotton aphid in sweet peppers. However, the residue levels of total flonicamid in sweet pepper exported to Japan in 2009 were exceeded the maximum residue limit (MRL). This study was conducted to elucidate residual properties of flonicamid parent compound and its metabolites in sweet peppers. It was carried out to compare the variation of residues in sweet pepper in three different greenhouses for 21 days after 3 times application with 7 days interval. The mean residues were 0.176, 0.152 and 0.108 mg $kg^{-1}$ and the residue levels in sweet pepper among three greenhouses show significant difference. The maximum residue levels were detected 10 days later after last treatments. The overall residue levels were lower than MRL 2.0 mg $kg^{-1}$ (by Korea) and 0.4 mg $kg^{-1}$ (by Japan in 2009 but now revised MRL is 2.0 mg $kg^{-1}$). But the residue level of total flonicamid at the 21th day after 3 times treatment with 7 days interval was 0.429 mg $kg^{-1}$ restricted by the application of double rate than recommended rate. The amounts of metabolites, TFNA, 4-Trifluoro methyl nicotinic acid and TFNG, N-(4-trifluoro methyl nicotinoyl) glycine were increased while flonicamid parent compound was decreased over time. Therefore the longer trial period should be needed for flonicamid in sweet peppers.

Bionomics of Tetranychus urticae Koch on Eggplants under Various Nitrogen Regimes in Controlled Environment (시설 재배 가지에서 질소 시비 수준에 따른 점박이응애의 생물적 특성)

  • Kim, Ju;Lee, Sang-Koo;Kim, Jeong-Man;Kim, Tae-Heung;Moon, Hyung-Cheol;Choi, Kyu-Hwan;Choi, Dong-Chil
    • Korean journal of applied entomology
    • /
    • v.47 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • Development of T. urticae was studied on the leaves of eggplant grown in hydroponics with nitrogen contents of 5 mM, 10 mM, 30 mM, and 60 mM. As the nitrogen level in hydroponics increased, it also increased in the plant whereas that of K, Ca, and Mg decreased. More nitrogen in hydroponics resulted in increased contents of water and crude protein, and decreased ash, carbohydrates, and fibers within the plant. Biomass was the heaviest as 989.5 g at 10 mM and the lightest at 60 mM. Leaf thickness and the content of chlorophyll increased as the content of nitrogen increased. Laboratory leaf disc tests obtained from plants grown at various nitrogen levels revealed that feeding and oviposition preferences of T. urticae were high at 30 mM and low at 5 mM. Ratio of damaged leaf by naturally occurring T. urticae on eggplants of 99 days post-transplant in the greenhouse was the highest as 98% at 60 mM. Degrees of damage on eggplants with and without T. urticae infestation turned up more as the differences in the levels of nitrogen in the hydroponics get bigger. No definite differences in the rate of T. urticae development was found between nitrogen treatment levels but, mortalities in immature stages dropped as the nitrogen levels went up. Adult longevity was the longest of 11.9 for female and 6.9 days for male at 60 mM. Oviposition period was also the longest as 11.7 days at 60 mM and shortened as the level of nitrogen decreased. The number of eggs oviposited was the most as 144.4 at 60 mM while it was the least as 41.0 at 5 mM. Sex ratio was 0.75 in favor of female at 10 mM. $R_o$ and T increased, no trends were detected in $r_m\;and\;{\lambda}$, while Dt decreased as the levels of nitrogen went up.

Incidence of Rice stripe virus during 2002 to 2004 in Korea and Chemical Control of Small Brown Plant Hopper (2002-2004년의 벼줄무늬잎마름병 발생상황 및 약제처리에 의한 애멸구의 화학적 방제)

  • Park, Jin-Woo;Jin, Tae-Seong;Choi, Hong-Soo;Lee, Su-Heon;Shin, Dong-Bum;Oh, In-Seok;Lee, Sang-Guei;Lee, Min-Ho;Choi, Byeong-Ryeol;Bae, Soon-Do;Kim, Jin-Young;Han, Kwang-Seop;Noh, Tae-Hwan;Ko, Sug-Ju;Park, Jong-Dae;Lee, Bong-Choon;Kim, Tae-Sung;Chung, Bu-Keun;Hong, Sung-Jun;Kim, Choong-Hoe;Park, Hyung-Man;Lee, Key-Woon
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • Incidence of rice stripe disease, caused by Rice stripe tenuivirus (RSV), was surveyed during 2002 to 2004. The incidence area and ratio of diseased fields were decreased gradually during those period. Rate of diseased plants were 45.8%, 45.0% and 43.7% in the susceptible cultivars Chucheong, Saechucheong and Ilpum, respectively. However, the rate was 4.4% in resistant cultivar Hwaseong. In addition, breakdown rate was also significantly high in the susceptible cultivars in Chucheong, Saechucheong and Ilpum showing 33.6, 33.2 and 31.9%, respectively. In Hwaseong, the breakdown rate was 0.8%. Collection efficiency was compared between two insect vector collection methods. Insect-sucking machine method was much more efficient than sweeping net method in collecting small brown plant hopper (SBPH). According to the survey of the population density of the insect vector during 2002 to 2004, the national average population density was gradually decreased year by year, 3.6, 2.3, and 1.3%, respectively. This result was significantly related with the decrease of the incidence of rice stripe disease. Control efficiency of rice stripe disease by treating several seedling box and water surface with insecticides against SBPH resulted that imidacloprid GR, Fipronil FG, Clothianidin+Probenazole GR and Thiamethoxam GR showed over 80% of control efficiency at 28 days after treatment at the early stage in nursery.

Screening Methods for Plant-Coating Materials and Transpiration Inhibitory Effect of Soybean Oil to Crops (식물 코팅 소재 선발법과 작물들에 대한 콩 오일의 증산 억제 효과)

  • Jung, In Hong;Park, No Bong;Kim, Sang-Yeol;Na, Young-Eun;Kim, Soon-Il
    • Korean Journal of Plant Resources
    • /
    • v.27 no.4
    • /
    • pp.380-391
    • /
    • 2014
  • Plants as well as crops are damaged by a combination of the hot and dry winds that has been a major factor in the reduction of crop production. A means to protect them from damaging conditions is to consider a coating material. In this study, we established laboratory screening methods to find a coating material to protect a crop from rapid transpiration caused by various factors. In a test measuring the weight loss of kidney bean seedlings for 6 days, Avion treatments decreased its weight loss (P=0.05). Owing to long-time spend in completing this assay, we performed a more simple method using a cobalt chloride paper strip, which changes from blue to red colors under water condition. Beewax, guagum, paraffin liquid, soybean oil, and PE-635 gave a waterproofing effect above 37 and 43% at 0.5 and 1 h after treatment, respectively. However, these tested materials did not show significant waterproofing results at 2 h. Although the methods produced reasonable results, a screening method to obtain more objective data is needed. An alternative is to use an instrument that can detect the transpiration of crop leaves. In a preliminary test using barley leaves, a portable photosynthesis system showed transpiration inhibition of 2% soybean oil and 10 times-diluted Avion under field conditions. In another test using the leaves of maize seedlings and apricot tree, 2% liquid paraffin and plant oils such as apricot oil, linseed oil, olive oil, and soybean oil showed significant transpiration inhibition (P=0.05). Especially, paraffin liquid and soybean oil selected from above tests gave good transpiration inhibitory effects against rice at 2%. In addition, the mixture of 2% soybean oil and a spreader showed more elevated inhibition results comparing with soybean oil or the spreader alone indicating that the spreader may be attributed to more uniform diffusion of the hydrophobic material onto the leaf surface of maize seedlings. The hydrophobic material coated physically the stomata and cuticle layers on leaf surfaces of rice. These hydrophobic materials screened in this study are expected to be used as plant coating materials.

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.