• Title/Summary/Keyword: Water treatment plant

Search Result 2,087, Processing Time 0.033 seconds

Physiology and Growth of Transgenic Tobacco Plants Containing Bacillus subtilis Protoporphyrinogen Oxidase Gene in Response to Oxyfluorfen Treatment (Bacillus subtilis Protoporphyrinogen Oxidase 유전자 형질전환 담배의 Oxyfluorfen 처리에 대한 생리 · 생장반응)

  • Lee, J.J.;Kuk, Y.I.;Chung, J.S.;Lee, S.B.;Choi, K.W.;Han, O.S.;Guh, J.O.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.237-245
    • /
    • 1998
  • The transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants containing Bacillus subtilis protoporphyrinogen oxidase gene with cauliflower mosaic virus 35S promoter have recently been generated by using Agrobacterium-mediated gene transformation. The nontransgenic and the transgenic tobacco plants were compared with respect to responses to diphenyl ether herbicide oxyfluorfen and under various environmental conditions. Both cellular leakage and lipid peroxidation caused by oxyfluorfen were found to be less in the transgenic than in the nontransgenic plants. Growth responses of the transgenic plants under various temperature, light, and water conditions were almost the same as those of the nontransgenic plants, although the transgenic plants exhibited slightly more retarded growth under low light or saturated water condition. These results revealed that the transgenic tobacco plants containing B. subtilis protoporphyrinogen oxidase gene under cauliflower mosaic virus 35S promoter were relatively resistant to oxyfluorfen and exhibited normal growth pattern. Possible mechanism of resistance to oxyfluorfen in the transgenic plants is also discussed.

  • PDF

Development of Optimal Urban Runoff System : I. Study of Inflow/Infiltration Estimation Considering AHP in Urban Runoff System (최적 도시유출시스템의 개발 : I. 도시유출시스템에서의 AHP를 고려한 불명수량 산정에 대한 연구)

  • Lee, Jung-Ho;Kim, Joong-Hoon;Kim, Hung-Soo;Kim, Eung-Seok;Jo, Deok-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.3
    • /
    • pp.195-206
    • /
    • 2004
  • One of the main factors which reduces the efficiency of a sewage treatment plant is the Inflow/Infiltration(Ⅰ/Ⅰ) in the sewer First we must calculate the quantity of Ⅰ/Ⅰ via the investigation of each sewer to establish the reduction plan of Ⅰ/Ⅰ. However, in Korea, we apply the results of a surveyed sample to the entire study area to establish the reduction plan of Ⅰ/Ⅰ. This methodology just considers the total Ⅰ/Ⅰ for the entire study area but it does not consider the quantity of Ⅰ/Ⅰ for the individual sewer systems. Therefore, we may need the model to consider the Ⅰ/Ⅰ in the individual sewer systems and we develop the model to calculate the Ⅰ/Ⅰ that happen in urban sewer systems. We estimate the Ⅰ/Ⅰ of individual systems by the developed model and the estimated Ⅰ/Ⅰ are utilized as the basic data for the establishment of Ⅰ/Ⅰ reduction plan. The observed Ⅰ/Ⅰ for the entire study area is distributed into the individual sewer systems according to their defect states. Here, the weights of defect elements are calculated using AHP(Analytic Hierarchy Process) and we perform the uncertainty analysis for considering the errors using MCS(Monte Carlo Simulation).

Characterization of Bacterial Community in the Ecosystem Amended with Phenol (페놀이 첨가된 생태계에서 세균 군집구조 변화의 분석)

  • 김진복;김치경;안태석;송홍규;이동훈
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.72-79
    • /
    • 2001
  • The effect of phenol on the change of bacterial community in the effluent water from a wastewater treatment plant was analyzed by PCR and terminal restriction fragment length polymorphism (T-RFLP). The fragments of 16S rDNA were amplified by PCR with bacterial primers, where one of the primers was biotinylated at the 5'-end. After digestion with restriction enzymes, HaeIII and AluI, the biotinylated terminal restriction tragments (T-RFs) of the digested products were selectively isolated by using streptavidin paramagnetic particles. The single-stranded DNA of T-RFs was separated by electrophoresis on a polyacrylamide gel and detected by silver staining technique. When 10 standard strains were analyzed by our method, each strain had a unique T-RF which corresponded to the calculated size from the known sequences of RDP database. The T-RFLP fingerprint generated from the effluent water was very complex, and the predominant T-RFs corresponded to members of the genus Acinetobacter, Bacillus and Pseudomonas. In addition, the perturbation of bacterial community was observed when phenol was added to the sample at the final concentration of 250 $l^{-1}$. The number of T-RFs increased and the major bacterial population could be assigned to the genus Acinetobacter, Comamonas, Cytophaga and Pseudomonas. A intense band assigned to the putative genera of Acinetobacter and Cytophaga was eluted, amplified, and sequenced. The nucleotide sequence of the T-RF showed close relationship with the sequence of Acinetobacter junii.

  • PDF

Degradation Behavior of Endocrine Disrupter Bisphenol-A in the Lake and Stream (호소 및 하천에서 환경호르몬 Bisphenol-A의 분해거동에 관한 연구)

  • Kang, Ho;Shin, Kyung-Sook;Kim, Sun-Ki;Jin, Chang-Sook
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • Among the biodegradability tests, TOC-HANDAI and OECD method were utilized to examine the degree of biodegradation of endocrine disruptors, Bisphenol A (BPA) and Nonylphenol. Both methods used natural water microcosms and measured their biodegrada-bilities of BPA and Nonylphenol, in terms of TOC or DOC degradation with time for 28 days. Biodegradabilities for BPA, 73-78% with TOC-HANDAI method and 77-81% with OECD method were obtained respectively at the end of experiment. There was no difference in BPA degradation between two methods. BPA degradation was described by two distinct first order decay rates (k$_1$ and k$_2$) which could be separated by a simple visual fitting. Most of the initial decay reaction accelerated within 1-7 days with k$_1$of 0.24-0.34 $day^{-1}$. And the following another long term first order decay coefficient (k$_2$) showed 0.02-0.05 day$^{-1}$ with much flat slope. About 20-25% of initial BPA remained at the end of experiment. It suggests that the remaining TOC components in BPA biodegradation considered to be refractory metabolites of BPA. Nonylphenol at each sampling point was appeared to be mineralized 20-48% of initial TOC concentration. Consequently Nonylphenol seems more recalcitrant against biodegradation. BPA was not detected in the detection limit of ppb in the watershed of Daechung reservoir and Kum river. However 25 ppb concentration of BPA was detected at the influent of industrial wastewater treatment plant in Taejon.

  • PDF

Determination and Effects of N and Si Fertilization Levels on Grain, Quality and Pests of Rice after Winter Green-house Water-melon Cropping

  • Cho Young-Son;Jeon Weon-Tae;Bae Soon-Do;Park Chang-Young;Park Ki-Do;Kang Ui-Gum;Muthukumarasamy Ramachandran
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.274-281
    • /
    • 2006
  • In Korea, rice cultivars have been changing to 'quality' rice rather than high yielding cultivars. However, more than 10% of paddy field has been changed to greenhouse in winter season for cropping of water-melon, oriental-melon, straw berry and et cetra. This experiment has been made to identify the usefulness of critical N and Si fertilization(SF) level to obtain high grain quality rice with reduced insect pest damage by N and SF combination. Before the experiment, watermelon-rice cropping system was maintained for three seasons by farmer from 1998 to 2001. The experiment of N and Si (silicate) fertilization levels was evaluated with Hwayoung-byeo (Oryza sativa L., medium-maturing variety) in 2002 and 2003 in Uiryeong, Korea. Nitrogen fertilization (NF) levels were three and five in 2002 and 2003, respectively, and three SF levels were compared for getting the valuable N/SF level in both years. TOYO-value was positively affected by Si application in N100% plot but it was negatively related with NF level. Normal grain percentage was positively related with TOYO-value and it was highest in 0N plot and Si plots in N100%. Other appearance qualities like powdered, damaged, and cracked grain, were decreased with increasing N fertilization level. SF improved appearance quality in N100% plots but no effects in other treatments. Leaf sheath related diseases were significantly decreased by SF but it was negatively related with NF. In conclusion, SF could be improve grain quality at the same yield levels of conventional fertilization and it also could be reduce the diseases damages of rice plant in all N treatments. NF treatment reduced grain quality and improved grain yield at N50% level, however NF above N50% could not get any kind of benefits. So, compared with conventional fertilizer, reduced NF level is recommended for high grain quality with reduced insect pest damage.

Autotrophic Perchlorate-Removal Using Zero-Valent Iron and Activated Sludge: Batch Test (영가철과 활성슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Ahn, Yeong-Hee;Ha, Myoung-Gyu
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.444-450
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Autotrophic perchlorate-reducing bacteria (PRB) use hydrogen gas ($H_2$) as an electron donor to remove perchlorate. Since iron corrosion can produce $H_2$, feasibility of autotrophic perchlorate-removal using zero-valent iron (ZVI) was examined in this study using activated sludge that is easily available from a wastewater treatment plant. Batch test showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of ZVI. The perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of iron particles used for the autotrophic perchlorate-removal, suggesting that iron particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of biofilm sample obtained from the ZVI-added enrichment culture used for $ClO_4^-$-degradation. A major band of the biofilm sample was most closely related to the class Clostridia.

Impact Assessment of Sewage Effluent on Freshwater Crucian Carp Carassius auratus using Biochemical and Histopathological Biomarkers (생화학적 및 조직병리학적 생체지표를 이용한 하수처리장 방류수의 담수 붕어(Carassius auratus) 영향 평가)

  • Samanta, Palas;Im, Hyungjoon;Lee, Hwanggoo;Hwang, Soon-Jin;Kim, Wonky;Ghosh, Apurba Ratan;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.419-432
    • /
    • 2016
  • The aim of this study is to assess the influence of effluent discharge from a sewage treatment plant by evaluating oxidative stress and histopathological alterations in freshwater crucian carp Carassius auratus collected from the Eungcheon stream, located in Korea. Catalase activity in the gills, liver, and kidneys of C. auratus was collected from mixing zones; the downstream site was notably higher of fish than that of the upstream site. In addition, the activity of glutathione-S-transferase in the gills and liver was significantly higher in samples from the mixing zone than in those from the upstream site (p < 0.05). In addition, significantly elevated lipid peroxidation levels were observed in fish livers sampled from the mixing zone than in those from the upstream site (p < 0.05). Significant histopathological alternations were also observed in C. auratus, with the order of magnitude changes being liver > kidney > gills. These findings suggest that the liver is most affected by effluent discharge. The degree of tissue changes (DTC) indicate that the highest level occurred in samples from the mixing zone (30.98 ± 5.40) followed by those from the downstream site (19.28 ± 4.31) and was the lowest in samples from the upstream site (4.83 ± 2.67). These findings indicate that fish collected from the mixing zone are most affected by effluent discharge and both oxidative stress and histopathological indices are useful tools for monitoring contaminated rivers and streams.

Characteristic of the Permeation Flux of Hollow Fiber Membranes by Process Pressures Change (공정압 변화에 따른 중공사막의 투과플럭스 특성)

  • Lee, Yong-Taek;Kim, Nam-Su;Shin, Dong-Ho
    • Membrane Journal
    • /
    • v.17 no.4
    • /
    • pp.318-328
    • /
    • 2007
  • This study was carried out to evaluate the performance of the separate membrane (HF; hollow fiber membrane with polysulfone) process applied with the external membrane types, internal pressure membrane types and external-internal types according to the variations of pressure and membrane pore size in the purification treatment process of the lake water. The maximum permeate flux was average values of 282 LMH and 234 LMH with the pore size of 0.3 and 0.05 ${\mu}m$ respectively in the external pressure membrane process, and 443 LMH and 522 LMH with the pore size of 0.3 and $0.05{\mu}m$ respectively in the internal pressure membrane process. In addition, the maximum permeate flux of the process that was applied with external and internal membrane pressure simultaneously showed the average values of 674 LMH with the pore size of $0.3{\mu}m$, and 648 LMH with the pore size of $0.05{\mu}m$. Therefore, maximum yield per unit area is supposed when the separate membrane that was applied with external and internal pressure simultaneously are used to treat the lake water.

Composting of Small Scale Static Pile by addition of Microorganism (미생물 첨가에 의한 소규모 정체식 퇴비화)

  • Chang, Ki-Woon;Yu, Young-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.1
    • /
    • pp.149-153
    • /
    • 2003
  • This study was conducted to survey the utilization possibility of composting system of small scale static pile with animal manure produced from cattle shed and the effect of addition of microorganism on the maturity of compost. Microorganisms added in composting substrate were bacteria+lactobacillus(BL)+photo.(BLP). The composting practiced was a windrow system without aeration equipment and turning was practiced periodically. The water content of substrate mixed with cow manure, rice husk, and sawdust was about 60%. The temperature during the composting process was increased at over $60^{\circ}C$ within 3 days after composting starting. Increase of temperature at the early stage of composting was fasten in BLP and BL than Control. Because the pH of the raw material was high, the changes of pH during composting was little and stabilized in weak alkaline condition. EC value was high for accumulation of manure and urine excreted continuously by animal and the changes of those during composting occurred in 5~10% increase. Reduction rates of C/N ratio were the largest as the 22.7% in BLP and 19.2and 17.5% in BL and Control respectively. In the evaluation of phytotoxicity, there was stabilized within the short time in BLP and not the difference between BL and Control. Treatment of animal manure produced from small scale cattle shed was possible by using the small scale static pile composting system with reasonable water content and turning and the addition of microorganism in composting substrate was effected on the temperature increase at the early stage of composting and reduction of plant toxicity compounds but little on the maturity of compost.

  • PDF

Economic Design of Activated Sludge System at the Optimum Sludge Concentration (슬러지 농도 최적화에 따른 합리적인 활성슬러지공정 설계방안 연구)

  • Lee, Byung Joon;Choi, Yun Young
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.483-490
    • /
    • 2014
  • The design procedures for a biological reactor and a secondary settling tank (SST) of an activated sludge system are based on the steady state design method (Ekama et al., 1986; WRC, 1984) and the 1-D flux theory design method (Ekama et al., 1997), respectively. This study combined both of the design procedures, to determine the optimum sludge concentration in the reactor and the best design with the lowest cost. The best design of the reactor volume and the SST diameter at the optimum sludge concentration were specified with varying wastewater and sludge characteristics, temperature, sludge retention time (SRT) and peak flow rate. The effects of the influent wastewater characteristics, such as substrate concentration and unbiodegradable particulate fraction, were found to be considerable, but the effect of unbiodegradable soluble fraction was to be negligible. The effects of sludge settling characteristics, were also significant. SRT, as an operating parameter, was found to be an important factor for determining the optimum sludge concentration. However, the effect of temperature was found to be small. Furthermore, for designing a large scale wastewater treatment plant, the number of reactors or SSTs could be estimated, by dividing the total reactor volume or SST area. The new combined design procedure, proposed in this research, will be able to allow engineers to provide the best design of an activated sludge system with the lowest cost.