• 제목/요약/키워드: Water treatment System

검색결과 2,440건 처리시간 0.029초

Recovery Increase by Recycling Backwash Residuals in Microfiltration System

  • Yu, Myong-Jin;Pak, Hong-Kyoung;Sung, Il-Wha
    • 환경위생공학
    • /
    • 제23권4호
    • /
    • pp.13-21
    • /
    • 2008
  • With the rise in membrane applications, residuals management has become a growing challenge for membrane system. The primary residuals of MF/UF (microfiltration/ultrafiltration) system results from the wastes generated during backwashing. Many regulatory agencies, utilities, and water process engineers are unfamiliar with the characteristics and methods for treatment and disposal of membrane residuals. Therefore, this study was performed to investigate the backwash residuals water quality from the pressurized system with and without pre-coagulation, and to suggest approaches for the backwash residuals treatment. Pressurized MF system was installed at Guui water intake pumping station and operated with raw water taken from the Han River. We compared performances with and without the recycling backwash residuals at flux conditions, 50 LMH and 90 LMH with and without pre-treatment (coagulation). Based on the results, recycling of backwash residuals in pressurized system with pre-coagulation showed applicability of backwash residuals managements. Moreover, the recovery rate also increased up to over 99%.

하수처리장 방류수를 이용한 인공함양 가능성 평가

  • 김병군;서인석;홍성택;김형수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.257-260
    • /
    • 2002
  • The main purpose of this research is to find suitable treatment methods of wastewater effluent for artificial recharge. For this purpose, we search the effluent quality of wastewater treatment plant and possibility of additional filtration process. Particles ranged 2 ~ 5 ${\mu}{\textrm}{m}$ and 15~20 ${\mu}{\textrm}{m}$ in "T" WWTP(Waste Water Treatment Plant) effluent were relatively dominant. In dual-media filtration system operation, head-loss development of column 1 was about two times faster than column 2, and head-loss development within 5 cm from surface was very important factor in operation, Conclusively, for the stable filtration and running time of 1.5~2 day, influent turbidity must keep 5 NTU or below, and filtration system must operated at 280 m/day or below. After filtration of WWTP effluent, water quality reached satisfactory level. This water has potential of agricultural reusing, flushing water in building, recharging water to river or stream at dry season and artificial recharge of ground water.und water.

  • PDF

바이오스톤 볼 수처리 시스템에 의한 오염물질 저감 및 저수지의 수질개선효과 산정 (Estimation of Water Quality Improvement and Reduction of Influent Pollution by Installation of Water Treatment System Filled with Bio-stone Ball)

  • 최선화;김흥섭;정세웅
    • 환경영향평가
    • /
    • 제28권5호
    • /
    • pp.471-482
    • /
    • 2019
  • 본 연구에서는 유기성 오염도가 높은 국내 하천 및 호소의 수질정화를 위해 바이오스톤 볼 담체를 이용한 수처리 기술을 개발하였다. 바이오스톤 볼 수처리기술의 오염물질 제거효율 및 저수지 수질개선효과 등을 평가하기 위하여 경기도 시흥시에 위치한 매화저수지에 실증플랜트를 설치하였다. 바이오스톤 볼 수처리시스템의 오염물질 제거효율은 BOD 70.3%(47.2~97.4%), COD 45.3%(26.1~64.7%), TOC 19.2%(8.5~50.0%), SS 82.8%(73.1~92.7%), Chl-a 80.4%(57.2~91.8%), TN 23.2%(6.4~39.5%), TP 51.8%(-1.1~80.1%)로 나타나 BOD, SS, Chl-a에서 평균 70~80% 이상의 매우 높은 정화효율을 나타내었다. 바이오스톤 볼 수처리시스템을 저수지 평시 유입량 설계기준으로 설치하였을 경우의 유입 오염물질 저감량 및 저수지 수질개선효과를 산정하였다. 저감되는 COD 부하량은 13,658 kg으로 연간 39.2%가 저감되고, TP 부하량은 297 kg으로 연간 16.8%가 저감되는 것으로 나타났다. 저수지의 연간 수질개선효과는 TOC $5.3{\rightarrow}4.5mg/L$(14.5%), COD $7.9{\rightarrow}6.8mg/L$(14.5%), Chl-a $42.3{\rightarrow}37.0mg/m^3$(12.5%), T-P $0.201{\rightarrow}0.150mg/L$(25.1%)가 평균적으로 개선되는 것으로 나타났다. 바이오스톤 볼 수처리시스템은 유기성 오염도가 높은 국내 하천 및 호소의 유입수 오염물질 제거 및 수질정화를 위한 수처리 시설로서 현장적용성이 높을 것으로 판단된다.

Models for drinking water treatment processes

  • Jusic, Suvada;Milasinovic, Zoran;Milisic, Hata;Hadzic, Emina
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.489-500
    • /
    • 2019
  • With drinking water standards becoming more rigorous and increasing demands for additional water quantities, while water resources are becoming more polluted, mathematical models became an important tool to improve water treatment processes performance in the water supply system. Water treatment processes models reflect the knowledge of the processes and they are useful tools for water treatment process optimization, design, operator training for decision making and fundamental research. Unfortunately, in the current practice of drinking-water production and distribution, water treatment processes modeling is not successfully applied. This article presents a review of some existing water treatment processes simulators and the experience of their application and indicating the main weak points of each process. Also, new approaches in the modeling of water treatment are presented and recommendations are given for the work in the future.

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu;Zhenhao Xu;Dongdong Pan;Haiyan Li;Jie Liu;Zhaofeng Li
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.155-171
    • /
    • 2023
  • Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.

선박평형수 관리시스템을 위한 해수 살균법 (Sterilization of Seawater for the Ballast Water Management System)

  • YUN, YONGSUP;CHOI, JONGBEOM;KANG, JUN;LEE, MYEONGHOON
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.172-172
    • /
    • 2016
  • The International Maritime Organization(IMO) adopted the International Convention for the Control and Management of Ships' Ballast Water and Sediments in 2004 to prevent the transfer of aquatic organisms via ballast water. Forty ballast water treatment systems were granted final approval. A variety of techniques have been developed for ballast water treatment including UV treatment, indirect or direct electrolysis, ozone treatment, chemical compounds and plasma-arc method. In particular, using plasma and ozone nano-bubble treatments have been attracted in the fields. However, these treatment systems have a problem such as remained toxic substance, demand for high power source, low efficiency, ets. In this paper, we present our strilization results obtained from membrane type electrolytic-reduction treatment system The core of an electrolysis unit is an electrochemical cell, which is filled with pure water and has two electrodes connected with an external power supply. At a certain voltage, which is called critical voltage, between both electrodes, the electrodes start to produce hydrogen gas at the negatively biased electrode and oxygen gas at the positively biased electrode. The amount of gases produced per unit time is directly related to the current that passes through the electrochemical cell. From the results, we could confirm the sterilization effect of bacteria such as S. aureus, E. Coli and demonstrate the mechanism of sterilization phenomena by electrolytic-reduction treatment system.

  • PDF

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

갈대(Phragmites australls)수초를 적용한 바이오필터에서의 하수처리시설 악취저감기술 (Odor Reduction Technology in Sewage Treatment Facility Using Biofilter with Reed Grass(Phragmites australls))

  • 정진도;김규열
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.373-382
    • /
    • 2013
  • In this study, a biological odor treatment system was proposed to remove odor(foul smell) materials causing several problems in the closed sewage treatment plant. This odor treatment system was composed of a two-step biofilter system in one reactor. The two-step biofilter reactor was constructed with natural purification layer in upper part and artificial purification layer in lower part. The reed grasses of water purification plants were planted in the surface area and mixed porous ceramic media were filled with the lower part of biofilter reactor. By using the above experimental apparatus, the ammonia gas removal efficiency was attained to 98.3 % and the hydrogen sulfide gas removal efficiency was appeared more than 97.7 % which shows more effective than the conventional odor removal process.

SWAT모델과 물수지분석을 이용한 물재이용에 의한 도시물순환 변화 분석 (Analysis for water cycle change using SWAT model and water balance analysis depending on water reuse in urban area)

  • 김영란;황성환;이성옥
    • 상하수도학회지
    • /
    • 제29권4호
    • /
    • pp.447-457
    • /
    • 2015
  • Water cycle within the human civilization has become important with urbanization. To date, water cycle in the eco-system has been the focus in identifying the degree of water cycle in cities, but in practicality, water cycle within the human civilization system is taking on an increasing importance. While in recent years plans to reuse water have been implemented to restore water cycle in cities, the effect that such reuse has on the entire water cycle system has not been analyzed. The analysis on the effect that water reuse has on urban areas needs to be go beyond measuring the cost-savings and look at the changes brought about in the entire city's water cycle system. This study uses a SWAT model and water balance analysis to review the effects that water reuse has on changes occurring in the urban water cycle system by linking the water cycle within the eco-system with that within the human civilization system. The SWAT model to calculate the components of water cycle in the human civilization system showed that similar to measured data, the daily changes and accumulative data can be simulated. When the amount of water reuse increases in urban areas, the surface outflow, amount of sewer discharge and the discharged amount from sewage treatment plants decrease, leading to a change in water cycle within our human civilization system. The determinant coefficients for reduced surface outflow amount and reduced sewer discharge were 0.9164 and 0.9892, respectively, while the determinant coefficient for reduced discharge of sewage treatment plants was 0.9988. This indicates that with an increase in water reuse, surface flow, sewage and discharge from sewage treatment plants all saw a linear reduction.

Automation Development in Water and Wastewater Systems

  • Olsson, Gustaf
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.197-200
    • /
    • 2007
  • Advanced control is getting increasingly demanded in water and wastewater treatment systems. Various case studies have shown significant savings in operating costs, including energy costs, and remarkably short payback times. It has been demonstrated that instrumentation, control and automation (ICA) may increase the capacity of biological nutrient removing wastewater treatment plants by 10-30% today. With further understanding and exploitation of the mechanisms involved in biological nutrient removal the improvements due to ICA may reach another 20-50% of the total system investments within the next 10-20 years. Disturbances are the reason for control of any system. In a wastewater treatment system they are mostly related to the load variations, but many disturbances are created also within the plant. In water supply systems some of the major disturbances are related the customer demand as well as to leakages or bursts in the pipelines or the distribution networks. Hardly any system operates in steady state but is more or less in a transient state all the time. Water and energy are closely related. The role of energy in water and wastewater operations is discussed. With increasing energy costs and the threatening climate changes this issue will grow in importance.