• 제목/요약/키워드: Water transmission pipe

검색결과 31건 처리시간 0.022초

이중송수관로를 이용한 안정적인 송수를 위한 설계인자에 관한 연구 (A research on the design parameters for a double-transmission main system for sustainable water supply)

  • 현인환;홍준의;김두일
    • 상하수도학회지
    • /
    • 제27권1호
    • /
    • pp.129-138
    • /
    • 2013
  • Water interruption is often caused by a rupture in the branch-like singular pipeline. This will cause critical complaints from household and may decrease public service quality. As an alternative of singular pipeline, additional parallel pipeline could be installed for sustainable water supply. This system is called double pipeline system and able to be utilized for water transmission line between treatment plant and distribution reservoir. Construction of double pipeline was thought to increase capital cost, which can be an issue to waterworks authorities. Reducing capital cost was possible by means of installing connectors between two parallel pipelines because of reduced diameter of each pipe. To obtain optimal design condition for connectors, it was necessary to compare water pressure according to accident location, to investigate flow according to connection pipe spacing, connection pipe diameter, and aging of pipe. Reliable and economical connection layouts were determined based on these results. The cost estimation for each design condition was carried out. Cost was approximately reduced by 20 ~ 30 % compared to the double pipeline without connections. In addition to this, connection between double pipelines could expect extra benefits for maintenance since the pipe could be repaired and rehabilitated without interruption.

간접냉각이 이용된 지중송전케이블의 적정냉각조건에 관한 연구 (A Study on the Optimum Cooling Condition of the Underground Power Transmission Cable Equipped with a Separate Pipe Cooling System)

  • 박만흥;최규식;서정윤;김재근;이재헌
    • 설비공학논문집
    • /
    • 제4권4호
    • /
    • pp.263-276
    • /
    • 1992
  • The transmission current in a power cable is determined under the condition of separate pipe cooling. To this end, the thermal analysis is conducted with the standard condition of separate pipe cooling system, which constitutes one of the underground power transmission system. The changes of transmission current in a power cable with respect to the variation of temperatures and flow rates of inlet cooling water as well as the cooling spans are also determined. As a consequnce, the corresponding transmission current is shown to vary within allowable limit, resulting in the linear variation of the current for most of the cable routes. The abrupt changes of current, however, for the given flow rate of inlet cooling water in some cooling span lead to the adverse effects on the smooth current transmission within the underground power transmission system. In practice, it is expected that the desinging of the separate pipe cooling system in conjunction with the evaluation of system capacity should take into account the effects of design condition on the inlet cooling flow rate.

  • PDF

자동화 장비를 이용한 대형 상수관로 갱생을 위한 코팅재료 선정 및 방법에 관한 연구 (Investigating coating material and conditions for rehabilitation of water transmission pipe using a robotic system)

  • 김진원;김동현;이영건;이세완;김두일
    • 상하수도학회지
    • /
    • 제30권6호
    • /
    • pp.725-736
    • /
    • 2016
  • There is a growing concern on the improvement of water distribution pipeline for multi-regional water supply system in Korea along with its aging infrastructure. Rehabilitation of large diameter pipeline is more efficient in cost and time compared to replacement with trenching. The procedure for rehabilitation are diagnosis, cleaning, spraying coating material, and final inspection. The internal state of pipeline was carefully diagnosed and got C grade, which required rehabilitation. We found that 17,274,787,000 Korean won could be saved after pipe surface coating because of increased C coefficient of Hazen-Williams equation. Optimal coating material was D polyurea. We also found optimal distance between spraying nozzle and pipe wall to be 70 - 80 cm, which were critical factors for coating quality. This study also illustrated the time for spray drying to be more than 30 min. These results could be used in the quality control process during rehabilitation of aged pipelines.

수돗물 공급 안정화를 위한 광역상수도 관로 안정화 타당성 연구 (Feasibility Study of Multi-regional Transmission Main Stabilization for Sustainable Water Supply)

  • 이재범;이충성;정관수
    • 상하수도학회지
    • /
    • 제27권3호
    • /
    • pp.395-404
    • /
    • 2013
  • The risk of pipe-bursting in multi-regional transmission mains consisting of 89 % of singled pipeline is so high that pipeline stabilization project is required such as renewal and replacement, pipe paralleling, emergency ties. Pipeline stabilization projects could be postponed at the step of initial decision-making because effect of this project is intangible benefit like activation of economic, improvement of welfare related to water. This study is to suggest quantified economical feasibility model for intangible benefit presumption to solve above problem. Cost reduction of emergency water supply, leakage, burst restore and energy efficiency improvement was altered and applied. As a result of economic analysis taking into account estimated benefit and cost under discount rate 5.5 %, service life 40 years, sufficient economic feasibility analyzed with B/C 2.45, NPV 317,700 million won, IRR 9.09 %.

상수원수 내 이취미 제거효율 향상을 위한 분말활성탄 투입지점의 평가 (Evaluation on the Locations of Powdered Activated Carbon Addition for Improvement of Taste and Odor Removal in Drinking Water Supplies)

  • 김영일;이상진;배병욱
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.341-348
    • /
    • 2007
  • The efficiency of powdered activated carbon (PAC) for removing taste and odor (T&O) in drinking water supplies is dependent on the contact time, quality of mixing, and the presence of competing compounds. All of these are strongly influenced by the stage in the treatment process at which the PAC is added. In conventional water treatment plants (WTPs), PAC is commonly added into the rapid mixing basin where chemicals such as coagulants, alkaline chemicals, and chlorine, are simultaneously applied. In order to prevent interference between PAC and other water treatment chemicals, alternative locations for addition of PAC, such as at transmission pipe in the water intake tower or into a separated PAC contactor, were investigated. Whatever the location, addition of PAC apart from other water treatment chemicals was more effective for geosmin removal than simultaneous addition. Among several combinations, the sequence 'chlorine-PAC-coagulant' produced the best result with respect to geosmin removal efficiency. Consequently, when PAC has to be applied to cope with T&O problems in conventional WTPs, it is very important to prevent interference with other water treatment chemicals, such as chlorine and coagulant. Adequate contact time should also be given for adsorption of the T&O compounds onto the PAC. To satisfy these conditions, installation of a separated PAC contactor would be the superior alternative if there is space available in the WTP. If necessary, PAC could be added at transmission pipe in the water intake tower and still provide some benefit for T&O treatment.

전력구트라프간접수냉방식에서의 지중송전케이블에 대한 열해석 (A Thermal Analysis for the Underground Power Transmission Cable by a Water Pipe Cooling Method with Trough in Tunnel)

  • 박만흥
    • 태양에너지
    • /
    • 제15권3호
    • /
    • pp.59-73
    • /
    • 1995
  • 원활한 전력공급을 위해 지중송전케이블에서 발생된 열을 제거하기 위한 방법으로 전력구트라프간접수냉방식이 적용된 지중송전계통에 대한 각 주요 구성요소의 열해석을 수행하였다. 열해석을 수행한 결과, 주어진 조건에서 냉동기가 채택된 냉동장치에서는 냉각수유량은 $2{\sim}3{\ell}/s/pipe$, 팬에 의한 풍속은 $1{\sim}2m/s/fan$인 경우에 지중송전계통의 원활한 전력공급을 위한 냉각계통의 최적조건으로 계산되었다. 반면에 냉각탑만을 설치한 경우에는 냉각수유량 및 풍속이 각각 $2{\sim}3s/pipe$ 및 6 m/s/fan이 최적조건으로 계산되었다. 그러나 냉각탑만이 설치된 경우에는 풍속이 너무 커져서 용량이 큰 팬의 설치 및 전력구내에서 작업자의 작업조건에 적합하지 않다. 따라서 본 연구의 주어진 조건하에서 지중송전계통의 냉동계통은 냉동기가 설치된 냉동장치가 바람직하다.

  • PDF

가정식난방배수관내의자동온도송신장치에대한연구 (The Study on Automatic Temperature Transmission System for the Heating pipe at Home)

  • 박철민;조형국;이훈재
    • 한국정보통신학회논문지
    • /
    • 제13권12호
    • /
    • pp.2641-2646
    • /
    • 2009
  • 가정 가사생활을 자동으로 관리 하는 Home Automation System은 점차 발전하고 있으며, 에너지의 절약과 재사용에 관한 부분 또한 점차 관심이 높아지고 있다. 일반 아파트에서 난방은 필수이다. 난방의 방법은 크게 두가지로 나눈다. 하나는 전기를 이용하는 것이고 다른 하나는 온수를 이용하는 것이다. 전기를 이용하면 전기요금의 상승으로 효률적이지 못하다. 그러나 온수를 이용하면 비용 면에서 많은 절감이 된다. 온수를 이용할 때, 온수의 온도가 모든 파이프에서 동일하지 못하다. 그러므로 실내의 온도를 설정치와 일치하지 못할때가 있다. 이러한 문제의 해결은 온수 파이프내에 온도 센서를 부착하여, 이 온도를 실시간으로 전송하고, 수신 측에서 온수의 온도를 조절하면 된다. 본 논문에서는 보일러 내부의 순환 pump가 난방수 순환에 따른 동력을 방바닥 시멘트 몰탈 내부의 소형교류 발전기에 의해서 전기에너지를 얻어 동작하는 저전력 기반의 난방배수관 자동온도 배수장치를 제안한다. 시스템의 전원은 프로펠러 수차 방식을 사용하여 분사수 충돌 방식을 사용하였으며, MCU 모듈은 atmel 사의 ATmega8, 통신모듈을 위하여 Chipcon사의 CC1020을 사용하였다.

원심펌프의 시동 및 정지에 따른 수격현상 (Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump)

  • 김경엽;김점배
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

상수도 관로의 물리적 상태평가 기준 개선 (Improvement of Physical Condition Assessment in Water Mains)

  • 김주환;;배철호;안효원;황진수;최두용
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1710-1715
    • /
    • 2010
  • 상수도시설은 운영관리 환경, 사용범위, 빈도 등 특성에 따라 수명이 달라지며, 현행 법률에서 일률적으로 정하고 있는 내용연수와 차별된 접근이 필요함에 따라, 시설의 파손, 보수이력 등 관리현황 및 시설의 경시적인 변화 상태를 조사 분석하여 기술적 판단을 토대로 한 수명평가 방안이 필요하다. 따라서 본 연구에서는 국내외 내용연수 적용현황과 시설별 내용연수 산정 방안, 외국의 상수도시설물 관리 방법, 기존 관로 상태평가 기준 수립을 위한 현황 등을 조사하고, 매설 상수관로에 현장조사를 수행하여, 상수관로의 물리적인 파손위험성과 사고이력을 기반으로 경제적 가치 기준에 의한 잔존수명 평가 기법을 개발하였다. 또한 기존 우리 공사의 노후도 기법을 물리적인 노후진척에 따른 상태변화와 실측 데이터를 활용하여 통계적인 분석을 통하여 평가항목은 축소하고, 신뢰도는 제고하였으며, 관 상태평가를 통해서 합리적인 개량계획 수립을 추진할 수 있도록 관상태평가 가이드라인을 개발하였다.

  • PDF

대구경 관로의 배수시간 산정을 위한 수치해석 기법 (A Numerical Method to Calculate Drainage Time in Large Transmission Pipelines Filter)

  • 신병호;최두용;정관수
    • 상하수도학회지
    • /
    • 제31권6호
    • /
    • pp.511-519
    • /
    • 2017
  • Multi-regional water supply system, which installed for supplying multiple water demands, is characterized by large-sized, long-distance, tree-type layout. This system is vulnerable to long-standing service interruption when a pipe breaks is occurred. In this study, a numerical method is proposed to calculate drainage time that directly affects time of service interruption. To begin with, governing equations are formulated to embed the delayed drainage effect by the friction loss, and to resolve complicated connection of pipelines, which are derived from the continuity and energy equations. The nonlinear hydraulic equations are solved by using explicit time integration method and the Newton-Raphson method. The developed model is verified by comparing the result with analytical solution. Furthermore, the model's applicability is validated by the examples of pipelines in serial, in parallel, and complex layout. Finally, the model is utilized to suggest an appropriate actions to reduce the deviation of draining time in the C transmission line of the B multi-regional water supply system.