• Title/Summary/Keyword: Water tank

Search Result 2,107, Processing Time 0.032 seconds

Particle Removal in a Rainwater Storage Tank, and Suggestions for Operation & Design (빗물저장조에서 입자의 제거특성 및 운전과 설계시 고려사항)

  • Mun, Jungsoo;Yoo, Hyoungkeun;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2007
  • A rainwater utilization facility consists of its catchment area, treatment facility, storage tank, supply facility and pipes in general. The rainwater storage tank which occupies the largest area of the facility has been usually considered quantitatively for determining the storage capacity. Hence, there is little information on water quality improvement by sedimentation in a rainwater storage tank in operation. In this study, we measured the rainwater quality in a rainwater storage tank in operation during late spring and summer, and showed water quality improvement of turbidity removal of 25~46% by sedimentation in a rainwater storage tank under a fixed water level without inflow and outflow after runoff ceased. It is necessary to have a considerable distance between the inlet and outlet of the tank and, if possible, it is recommended that the design should allow for an effective water depth of over 3 m and supply rainwater near the water surface. The operation method which increases the retention time by stopping rainwater supply for insuring low turbidity is recommended when the turbidity of rainwater runoff is high. And also more efficient operation and maintenance of the rainwater utilization facility is expected through the tailored design and operation of the facility considering particle removal and behavior.

Acoustic Field Analysis of Reverberant Water Tank using Acoustic Radiosity Method and Experimental Verification (음향라디오시티법을 이용한 잔향수조 음장 해석과 실험검증)

  • Kim, Kookhyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.464-471
    • /
    • 2019
  • The acoustic power is a major acoustical characteristic of an underwater vehicle and could be measured in a reverberant water tank. In order to obtain accurate measurement results, the acoustic field formed by the sound source should be investigated quantitatively in the reverberant water tank. In this research, the acoustic field of a reverberant water tank containing an underwater sound source has been analyzed by using an acoustic radiosity method one of the numerical analysis methods suitable for the acoustic analysis of the highly diffused space. The source level of the underwater sound source and acoustical properties of the water tank input to the numerical analysis have been estimated by applying the reverberant tank plot method through a preliminary experiment result. The comparison of the numerical analysis result with that of the experiment has verified the accuracy of the acoustic radiosity method.

Evaluation of Seismic Design Force by Earthquake Response Analysis of Water Tanks Installed in RC Buildings (건축물에 설치된 물탱크의 지진응답해석을 통한 설계하중 평가)

  • Baek, Eun Rim;Oh, Ji Hyeon;Choi, Hyoung Suk;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.

A Study on Vibration Characteristics in Water Tank Structure (접수탱크구조의 진동특성에 관한 연구)

  • 배성용
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.

The Study on Efficiency Improvement of a Thermal Storage Tank for Solar Combined Heating System (태양열원 난방기의 수축열조 효율개선에 관한 연구)

  • Ryu, Nam-Jin;Han, Yu-Ry;Park, Youn-Cheol
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2007
  • This study is conducted to improve the efficiency of a thermal storage tank. The thermal storage tank was designed to store heat energy that obtained from the solar or the others heat sources. However, it has difficulties in storing heat with nonuniform temperature through the entire tank with respect to the vertical direction, This study is focused on the thermal stratification to improve thermal comfort for the resident in house. To enhance temperature stratification of the tank, a distributor was designed and installed in the middle of the storage tank vertically. The vertically designed distributor could supply the return water with stratified temperature in the storage tank with respect to the height. The water velocity from the distributor hole is the same with the other outlet in the distributor. However, gravity effect on the flow in the storage tank is much higher than that of the velocity effect due to that Froude Number is less than 1. During the heat charging process in the storage tank, temperature maintained with little difference with respect to the height. However the charging process takes long time to get a effective temperature for the heating or hot water supply because of all of water in the storage tank needs to be heated.

Design Modification of a Thermal Storage Tank of Natural-Circulation Solar Water Heater for a Pressurized System (자연순환형 태양열 온수기 축열조의 압력식 설계 개조)

  • Boo, Joon-Hong;Jung, Eui-Guk
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 2007
  • For a conventional natural-circulation type solar water heater, the pressure head is limited by the height between the storage tank and hot water tap. Therefore, it is difficult to provide sufficient hot water flow rate for general usage. This study deals with a design modification of the storage tank to utilize the tap-water pressure to increase hot-water supply Based on fluid dynamic and heat transfer theories, a series of modeling and simulation is conducted to achieve practical design requirements. An experimental setup is built and tested and the results are compared with theoretical simulation model. The storage tank capacity is 240 l and the outer diameter of piping was 15 mm. Number of tube turns tested are 5, 10, and 15. Starting with initial storage tank temperature of $80^{\circ}C$, the temperature variation of the supply hot water is investigated against time, while maintaining minimum flow rate of 10 1/min. Typical results show that the hot water supply of minimum $30^{\circ}C$ can be maintained for 34 min with tap-water supply pressure of 2.5 atm, The relative errors between modeling and experiments coincide well within 10% in most cases.

Structural Effect Evaluation of an Apartment Building Due to the Water Tank under Earthquake Load (지진발생시 아파트 옥탑층 물탱크의 구조적 영향평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.29-40
    • /
    • 1999
  • High-rise building for dwelling has many factors to be considered in structural aspects. In particular, the higher the building, the bigger the lateral loads such as wind and earthquake due to its dynamic characteristics. Unlike the wind load, the earthquake load, even if the shape of the structures are similar, depends on structural characteristics and it is difficult to predict. For an apartment building, the water tank in the penthouse, due to its heavy weight, changes the behavior of a building when the earthquake occurs. The purpose of this study is to determine how the water tank affects the behavior of an apartment building when earthquake occurs. Dynamic analysis was accomplished on two cases - 1) water tank is considered 2) water tank is not considered - to understand how it affects the behavior of a high-rise apartment building. Structural design was accomplished to understand how the water tank and the peak acceleration affects each structural member. The effect of the water tank on the response of structure was large. Elsewhere the water tank has no effect on the design of a strutural member. However some structural members were affected when the peak acceleration of an earthquake is 0.4g.

  • PDF

An Experimental Investigation for Efficient Operation of Septic Tank (정화조의 효율적인 운영을 위한 실험적 고찰)

  • Lee, Jang-Hown;Lee, Kyeong-Soo;Kho, Soo-Hoon;Song, Min-Hee;Lee, Soo-Hyun;Lee, Yong-Hoon;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.123-129
    • /
    • 2012
  • A septic tank is a purification treatment system where night soil and other waste matter is converted into harmless material by the activities of bacteria. Effluent from the septic tank flows into the sewer pipe, and then this effluent affects the quality of water environment and makes foul smell. In this study, through the proper maintenance of septic tank it was tried to minimize the impact of sewer pipe on water quality and fouling smell. BOD removal rate from the septic tank's effluent which exceeded legal cleaning period was investigated for the proper maintenance. BOD Removal rate of the twelve septic tank's effluent is -62.5% to 43.9%. According to the result of BOD removal rate, septic tank cleaning should be done at least once a year. And the pathogenic coliform bacillus in the twelve septic tank's effluent is average 768,000 (MPN/$100m{\ell}$). The chlorine disinfection is needed to remove the pathogenic coliform bacillus in septic tank effluent.

Evaluation of Tank Capacity of Rainwater Harvesting System to Secure Economic Feasibility and Sensitivity Analysis (경제성 확보를 위한 빗물이용시설의 규모 산정 및 민감도 분석)

  • Mun, Jung-Soo;Kim, Ha-Na;Park, Jong-Bin;Lee, Jung-Hun;Kim, Ree-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.191-199
    • /
    • 2012
  • Rainwater harvesting systems (RWHS), one of measures for on site rainwater management, have been promoted by laws, regulations and guidelines and have been increased. However, more evaluation of economic feasibility on RWHS is still needed due to seasonal imbalance of rainfall and little experiences and analysis on design and operation of RWHS. In this study, we investigated tank capacity of RWHS to secure economic validity considering catchment area and water demand, which is affected by building scale. Moreover, sensitivity analysis was performed to examine the effect of design factors, cost items and increase rate of water service charge on economic feasibility. The BCR (benefit cost ratio) is proportional to the increase in tank capacity. It is increased steeply in small tank capacity due to the effect of cost and, since then, gently in middle and large tank capacity. In case of 0.05 in the rate of tank volume to catchment area and 0.005 in water demand to catchment area, BCR was over one from the tank capacity of 160 $m^{3}$ taking into account of private benefits and from the tank capacity of 100 $m^{3}$ taking into account of private and public benefits. Sensitivity analysis shows that increase of water demand can improve BCR values with little cost so that it is needed to extend application of rainwater use and select a proper range of design factor. Decrease of construction and maintenance cost reduced the tank volume to secure economic validity. Finally, increase rate of water service charge had considerable impact on economic feasibility.

A Study on the Surge Tank (수압조절수조(Surge Tank)에 관한 연구)

  • 남선우
    • Water for future
    • /
    • v.6 no.1
    • /
    • pp.29-35
    • /
    • 1973
  • For the simplicity in the analytical solution, the simple surge tank has been chosen for the test where an unsteady flow is porduced by suddenly closing the valve controlling the discharge. The valve is loated immediately downstream from the surge tank. Momentumn equations in the penstock and in the surge column are measured recored on the oscillograph and then the calibration of surge column heights and scale readings on the oscillograph trace are made. The diameter of the penstock are determined by the trial and error method. The water levels in the surge column are computed by numerical integration of the differential equation of the surge tank. The relationships between the results from the experiment and numerical computation are figured, compared and discussed.

  • PDF