• 제목/요약/키워드: Water supply pump

검색결과 193건 처리시간 0.025초

공동주택단지 급수계통의 유량특성에 미치는 감압밸브의 영향 (Influence of Pressure Reducing Valves on Flow Characteristics of the Water Supply System for an Apartment Complex)

  • 김태진;차동진
    • KIEAE Journal
    • /
    • 제12권6호
    • /
    • pp.23-28
    • /
    • 2012
  • Pressure distribution in the water supply system of an apartment complex consisting of 12 buildings and 635 units in total have been investigated numerically. The complex incorporates two zone booster pump system, and around a half of units have pressure reducing valves (PRVs) in them. Calculated hydrostatic pressure without the water flow were compared with their designed and measured counterparts, and they agreed quite well with each other. Then, the pressure and volumetric water flow rate at all units were analyzed, indicating that there are noticeable differences in pressure and flow rate in one unit to another, although the aforementioned minimization technologies of pressure deviation were employed. In order to further reduce the difference in the water flow rate, it is suggested that all the units in the complex have PRVs installed in their water supply system. The effect of setting pressure of the PRVs on the non-uniformity of the flow in each unit and on the reduction of total water supply for the apartment complex have been studied. With the same PRV setting pressure of 3.952 bar (or the gauge pressure of $3.0kg_f/cm^2$), it has been estimated that the suggested system improves the non-uniformity (the coefficient of variation) of the flow rate of apartment complex over the current system, from 8.02% to 6.66%, and reduces the total water supply, from $0.02804m^3/s$ to $0.02766m^3/s$.

공업용수 공급시스템의 효율적인 운영을 위한 시스템다이내믹스 모형의 개발 (Development of a System Dynamics Computer Model for Efficient Operations of an Industrial Water Supply System)

  • 김봉재;박수완;김태영;전대훈
    • 상하수도학회지
    • /
    • 제26권3호
    • /
    • pp.383-397
    • /
    • 2012
  • In this study, a System Dynamics (SD) simulation model for the efficient operations of an industrial water supply system was developed by investigating the feedback loop mechanisms involved in the operations of the system. The system was modeled so that as demand is determined the water supply quantity of intake pumping stations and dams are allocated. The main feedback loop showed that many variables such as the combinations of pump operation, unit electric power(kWh/$m^3$), unit electric power costs(won/$m^3$), water level of water way tunnel, suction pressure and discharge of pumping station, and tank and service reservoir water level had causal effects and produced results depending on their causal relationship. The configurations of the model included an intake pumping station model, water way tunnel model, pumping station model (including the tank and service reservoir water level control model), and unit electric power model. The model was verified using the data from the case study industrial water supply system that consisted of a water treatment plant, two pumping stations and four dams with an annual energy costs of 5 billion won. It was shown that the electric power costs could have been saved 7~26% during the past six years if the operations had been based on the findings of this study.

캐스케이드 열펌프시스템의 운전 특성에 관한 연구 (A Study on the Operating Performance of a Cascade Heat Pump)

  • 장기창;백영진;나호상;김지영;이재훈
    • 한국지열·수열에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.7-11
    • /
    • 2009
  • The purpose of this study is to investigate the performance of a water heat source cascade heat pump system R717(Ammonia) is used for a low-stage working fluid while R134a is for a high-stage. In order to gain a high temperature supply water in winter season, the system is designed to perform a cascade cycle. In this study, two experiments were carried out. One is a system starting test from the low load temperature of $10^{\circ}C$. The other is a system performance investigation over the R717 compressor capacity changes. Experimental results show that when it starts from the low load temperature, the suction temperature of the low-stage compressor is higher than that of a high-stage. The system performance increases when a water source temperature or a low-stage compressor rotational frequency goes higher.

  • PDF

히트펌프에 연계된 공기-물 직접접촉식 열교환기의 성능 (Performance of Air-Water Direct Contact Heat Exchanger Linked to Heat Pump)

  • 김영화;금동혁;유영선;강연구;김종구;장재경;이형모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.80.2-80.2
    • /
    • 2011
  • Fossil fuel was a major energy resource but the consumption of fossil fuel will decrease gradually because of limited deposits and non-environmental features. In contrast, because the renewable energy resources are infinite and sustainable, their consumption has increased annually. To promote the supply of these infinite natural energy we have to develop more efficient and inexpensive heat recovery system. In this study a simple device was designed as a heat exchanger, that is a direct contact heat exchanger. This heat exchanger was manufactured in cylindrical shape with height of 1,500 mm and diameter of 1,000 mm. To test the efficiency of this heat exchanger, it was connected to the evaporator of heat pump system. During the experimental tests, the humid air of $10{\sim}30^{\circ}C$ was supplied to this air-to-water heat exchanger and then the water flow rate was set to 2500~3500 L/h. Heat recovery rate of this heat exchanger increased in proportion to entering air temperature and water flow rate.

  • PDF

두 대의 펌프가 병렬로 설치되는 계통에서의 유량 특성 (Flow Rate Characteristics of Two Parallel Pumping System)

  • 박용철;지대영;서경우;윤현기;박정근
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.579-586
    • /
    • 2011
  • During a reactor normal operation, a primary coolant was designed to remove the fission reaction heat of the reactor. When one pump is failure and the other pump shall supply the cooling water to cool the reduced power, it is necessary to estimate how much flow will be supplied to cool the reactor. We carried a flow net work analysis for two parallel pumping system as based on the piping net work of the primary cooling system in HANARO. As result, it is estimated that the flow of one pump increased than the rated flow of the pump below the cavitation critical flow.

  • PDF

제 2종 LiBr-H2O 흡수식 히트펌프의 운전 변수에 따른 성능 특성 수치 해석 (Effects of Operation Conditions on the Performance of Type II LiBr-H2O Absorption Heat Pump)

  • 윤준성;권오경;차동안;배경진;김인관;김민수;박찬우
    • 설비공학논문집
    • /
    • 제29권1호
    • /
    • pp.7-14
    • /
    • 2017
  • This study carried out a numerical analysis of the effects of hot waste water supply on the performance of a Type II absorption heat pump. There are two types of hot waste water supply, regular series flow and reverse series flow. Also it investigated the interaction between each type of flow and heat exchange solutions. As the effectiveness of heat exchange solutions increase, the steam generation and (COP) increase as well. If the effectiveness of a heat exchange solution is lower than 0.566, the steam generation rate of the reverse flow is lower than that of the regular series flow. A high effectiveness of heat exchange solution is therefore required to make a larger amount of steam in reverse series flow than with ordinary series flow. The COP difference between the two types of flow decreases with the increasing effectiveness of the heat exchange solution. Thus, a reverse flow type absorption heat pump can match the high steam generation rate and COP of the ordinary flow type when a highly effective heat exchange solution is applied.

신재생에너지를 이용한 사막화 방지 시스템 실증 (몽골) (Demonstration of system to combat desertification using renewable energy)

  • 김만일;이승훈;황정훈;조운식;박문희
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.73-76
    • /
    • 2009
  • Generally, wind or solar power system is operated as a stand-alone power system, the efficiency of which could be higher by designing wind-solar combined system considering average wind speed and solar radiation of the desert region, Mongolia. This system is designed to generate electricity for power users and pumps the ground water for irrigation using deep well pump. The ground water can be used for farming or forestation where there is no or little irrigation system. In connection with this study, a renewable energy park, Green Eco Energy Park, was developed at about 50km east of Ulaanbaatar. 3 sets of 10kW wind power generator and 70 kW of solar power module were installed there. The electricity generated from the system is used to on-site office building and deep well pump for ground water pumping. A 10kW stand-alone solar pumping system, which has no rechargeable battery system, is installed to pump the ground water with the amount of generated power. The ground water is stored in 3 artificial ponds and then it is used for raising nursery tree and farming. The purpose of this study is to provide a possible energy solution to desert regions where there is no or little power system. The system also supply power to ground water pump, and the water can be used for farming and forestation, which will also be a solution of preventing desertification or spreading of desert area.

  • PDF

공동주택 온수난방 시스템의 적정 열공급을 위한 배관망 시뮬레이션 (Simulation of Pipe Network for Optimum Heat Supply in the Hot Water Heating System of Apartment House)

  • 김주용;민만기;최영돈
    • 설비공학논문집
    • /
    • 제5권3호
    • /
    • pp.157-168
    • /
    • 1993
  • Pipe network of hot water heat supply system in an apartment house was analyzed. Flowrate and supply heat capacity of each household in which constant flowrate balancing valve is installed in a single zone system were calculated and the results were investigated. In the existing piping system, the non-uniformity of heat supply with floors due to the static pressure and temperature difference between supply main and return main can not be avoided and this tendency get intense with the increase of the height of building. The non-uniformity of heat supply can be prevented by the installation of balancing valve at each household, however if the performance of supply pump is not sufficient to overcome the energy loss due to the installation of balancing valve for constant flow rate or if the selection of the valve capacity is not adequate, the valves will may lose their controllability.

  • PDF

단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가 (Development of Water Demand Forecasting Simulator and Performance Evaluation)

  • 신강욱;김주환;양재린;홍성택
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

광역상수도 계통의 Pump 운전비용 최소화 (Minimization of Pump Running Cost in the Large-scale Water Supply System)

  • 이광만;강신욱;김수명
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.276-281
    • /
    • 2009
  • 장거리 용수공급 시스템에서 전력비용은 전체 운영비용의 큰 부분을 차지한다. 본 연구는 시간단위의 펌프와 배수지 시스템의 최적 운영계획을 수립하기 위해 동적계획기법에 기초한 방법론을 제시하고 있다. 해석방법은 가용 가능한 펌프의 효율적 운전과 전력요금체계, 시간대별 용수수요추이 그리고 배수지 특성과 송수관로의 제약조건 등을 고려하였다. 이를 위해 적용 가능한 시스템 운영목적과 제약조건이 제시되었고 개발된 방법은 수도권 광역상수도 양주계통의 2개 가압장과 5개 배수지를 대상으로 적용되었으며, 적용결과는 상당한 수준의 펌프운전비용을 절감할 수 있는 것으로 나타났다. 이와 같은 방법은 생애주기 비용 최소화 측면에서 실제 용수공급 시설 운영과 대규모 용수공급 체계의 설계 등에 적용이 가능하다.

  • PDF