• Title/Summary/Keyword: Water supply capacity

Search Result 367, Processing Time 0.024 seconds

Development of a Simulation Model for Reservoir Sizing in a Region with Insufficient Hydrological Data (수문자료 빈곤지역에서의 저수지 규모 결정 모의 모형 개발)

  • 최진규
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.67-75
    • /
    • 2000
  • A simulation model for reservoir sizing was developed to be applied in a region with insufficient hydrological data. Reservoir storage balance equation was formulated on a monthly basis. Gajiyama equation was generalized to estimate monthly reservoir inflow more accurately. Monthly evaporation equation on a reservoir water surface was introduced , which was functioned with monthly mean temperature. Generalized Gajiyama equation was applied to estmate reservoir inflow of the Sayeon dam. Nash-Sutcliffe's model efficiency was 0.793. Using developed model for reservoir sizing, water supply capacity was analyzed with 118.000㎥/day on the Sayeon dam. This showed a reasonable result as compared with 110000㎥/day in other technical report. For general application of developed model, a virtual reservoir was considered and its dta of surface area and volume by elevation was prepared using DEM. Using the model, size of reservoir was determined and water supply capacity was anlayzed on a virtual reservoir.

  • PDF

Development of a Long-slope Water Harvesting System in Natural Channel for Drought Mitigation in Upland (밭작물 가뭄피해 경감을 위한 소류천 유출수 저수 시스템 개발)

  • Kim, Youngjin;Choi, Yonghun;Lee, Sangbong;Kim, Minyoung;Jeon, Jonggil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.111-118
    • /
    • 2020
  • This study developed a rainwater harvesting system for the irrigation of upland on sloping area. The assessment of water supply capacity was evaluated in farm field experience. This system consists of a water catchment device and a collapsible storage tank. The water catchment device was designed to collect runoff water in natural channel of 500 mm width into a pipe of 50 mm inner diameter. The device has funnel-shaped plan and cross-section of square. The storage capacity of the collapsible water tank was caculated to meet the water demand for irrigation in 30 a cultivated land for 10-year frequancy drought. The tank has a cuboid shape with a capacity of 30 ㎥, 5 m in width and length, 1.2 m in height. This system can supply 92% of the water required for drop irrigation of red pepper and 88% of the water required for drop irrigation of onions in 30 a cultivation land during the month of May and June. In the case of 16-dry days of 10-years frequency, this system is capable to irrigate 100% of required water for red pepper and onion, 76.7% of required water for Omija (Schisandra chinensis), and 51.5% of required water for autumn kimchi cabbage.

A Comparison Study on Fire Water Supply Duration and Capacity of Water Based Fire Suppression System of the United States, Japan, China and Korea (우리나라, 중국, 일본, 미국 수계소화설비 소화수 공급시간 및 소화수원에 대한 비교 연구)

  • Min, Se-Hong;Nam, Yu-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.13-20
    • /
    • 2013
  • Buildings in Korea have been getting higher recently and been being changed environmentally since the Korean fire standard was released in 1968. It should be established to make a appropriate correspondence of fire fighting against the those environmental changes. Most of all, fire water capacity which is basis of fire fighting service is a very significant factor. In this paper, the Korean fire water capacity and fire water duration were compared with China, Japan and the United states. Furthermore, fire water capacity, fire water duration, flow rate were compared by hazard classification, occupant use, number of floor and area with water based fire suppression system. This study has been surveyed to show what are difference, similarity, advantage and disadvantage on fire water capacity in the Korean standard comparing with neighboring countries like China, Japan as well as the United states. This study could be found what level the Korean fire water capacity is. So it suggests about more developed standard on fire water capacity with the result of analysis and comparison.

Predicting Flow Resistance Coefficients in Water Supply Mains (주변환경을 고려한 상수관망의 관 마찰손실계수 산정)

  • 손광익
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.223-231
    • /
    • 1996
  • For the most efficient operation of water mains, 124 head losses in domestic water supply steel mains were measured to provide the values of friction coefficient and the variable affecting the deterioration rate of Hazen Williams' and Darcy-Weisbach's friction coefficient. The experimental results show that pipe age is governing the friction coefficient of large mains (Diameter > 1100 mm). On the other hands, pipe age and pipe diameter are affecting the variation of carrying capacity for small mains (Diameter < 1100 mm). The friction coefficient of water mains in foreign countries is higher than that in Korea by about 5 to 10 in Hazen Williams' C value. The growing rate of roughness height of domestic water main is about 0.41 mm/year which is higher than the average of United States of America. So further study is required to find out what causes the serious deterioration rate.

  • PDF

A study on pollutants removal characteristics of domestic riverbed filtration and riverbank filtration intake facilities (국내 복류수 및 강변여과수 취수시설의 오염물질 제거특성에 관한 연구)

  • Chan-woo Jeong;Sun-ick Lee;Sung-woo Shin;Chang-hyun Song;Bu-geun Jo;Jae-won Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.5
    • /
    • pp.281-288
    • /
    • 2023
  • This study was performed to evaluate the pollutants removal characteristics of two types of RBFs(Riverbank filtration, Riverbed filtration) intake facilities installed in Nakdong River and in Hwang River respectively. The capacity of each RBF is 45,000 m3/d for riverbank filtration intake facility and 3,500 m3/d for riverbed filtration intake facility. According to data collected in the riverbank filtration site, removal rate of each pollutant was about BOD(Biochemical Oxygen Demand) 52%, TOC(Total Organic Carbon) 57%, SS(Suspended Solids) 44%, Total coliforms 99% correspondingly. Furthermore, Microcystins(-LR,-YR,-RR) were not found in riverbank filtered water compared to surface water in Nakdong River. DOC(Dissolved Organic Carbon) and Humics which are precursors of disinfection byproduct were also reported to be removed about 59% for DOC, 65% for Humics. Based on data analysis in riverbed filtration site in Hwang River, removal rate of each contaminant reaches to BOD 33.3%, TOC 38.5%, SS 38.9%, DOC 22.2%, UV254 21.2%, Total coliforms 73.8% respectively. Additionally, microplastics were also inspected that there was no obvious removal rate in riverbed filtered water compared to surface water in Hwang River.

Assessment of Variable Characteristics in Water Quality of the Supply Systems in the Building (건축물내 급수설비의 수질변화 특성과 영향력 평가)

  • Lee, H.D.;Hwang, J.W.;Bae, C.H.;Kim, S.J.
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.313-320
    • /
    • 2004
  • In this study, variable characteristics of drinking water and the influences on underground water reservoirs, rooftop water tanks, and service water pipes in the building were assessed. The influence of underground water reservoir material and water capacity on water quality also were assessed. The results are the following as; First of all, the drinking water passing through underground water reservoirs or service water pipes in the building, averagely metal component concentration more increased from percent of 41.3 to percent of 74.2 totally than other items of water quality. On the other hand, both residual chlorine and total solid highly decreased 65.6 percent and 35.3 percent, respectively. Therefore, it was thought that water quality could be getting worse for microorganism re-growth by residual chlorine reduction, and total solid also could be a cause for extraneous matters accumulated in water reservoir. Secondly, the variations on water quality of each stage for water supply system in the building were higher in water service pipes connected from rooftop water tanks to the tap than in underground water reservoirs. In addition to, among of twelve items on water quality, ten items on water quality except dissolved oxygen and residual chlorine increased. Therefore, it was thought that the influence of water service pipes connected from rooftop water tanks to the tap on water quality were higher than other stages of water supply system in the building. Thirdly, in case of materials of underground water reservoir, it was likely that the variation on water quality by stainless steel and concrete materials got some similar. In case of water capacity, the variations on water quality of underground water reservoirs over $1,000m^3$ higher than those under $1,000m^3$. That reasons was likely that the retention time(49.72 hours averagely) of underground water reservoirs over $1,000m^3$ was two times longer than it of those under $1,000m^3$(23.37 hours). Therefore, it was thought that the influence on water quality by materials were some similar, but in case of water capacity, the influence of underground water reservoirs were higher.

Development of an Adaptive Capacity Indicator to Climate Change in the Agricultural Water Sector (농업용수의 기후변화 적응능력 지표 개발 - 가뭄에 대한 적응을 중심으로 -)

  • Yoo, Ga-Young;Kim, Jin-Teak;Kim, Jung-Eun
    • Journal of Environmental Policy
    • /
    • v.7 no.4
    • /
    • pp.35-55
    • /
    • 2008
  • Assessing vulnerability to climate change is the first step to take when setting up appropriate adaptation strategies. Adaptive capacity to climate change is the important factor comprising vulnerability. An adaptive capacity index in agricultural water management system was developed considering agricultural water supply and demand for rice production in Jeolla-do, Korea. The agricultural water supply was assumed to be equal to the amount of water stored in the major agricultural reservoirs, while data on the agricultural water demand was obtained from the dynamic simulation results by Korea Agriculture Corporation(KAC). The spatial unit for analysis was conducted at the county(Si, Gun, Gu) level and temporal scale was based on every month from 1991-2003. Adaptive capacity for drought stress index(ACDS index) was calculated as the percentage of data points where the irrigated water supply was greater than the crop water demand. The ACDS index was compared with SWSCI(Standard Water Storage Capacity Index) and the relationship showed high degree of fit($R^2$=0.84) using the exponential function, indicating that the developed ACDS index is useful for evaluating the status of the balance between agricultural water supply and demand, especially for the small sized agricultural reservoirs. This study provided the methodological basis for developing climate change vulnerability index in agricultural water system which is projected to be more frequently exposed to drought condition in the future due to climate change. Further research should be extended to the study on the water demand of the crops other than rice and to the projection of the change in ACDS index in the future.

  • PDF

Thermal Performance Analysis of Hybrid heat Supply System for Zero Carbon Green Home (제로카본 그린홈 구현을 위한 하이브리드 열공급 시스템의 열성능 분석)

  • Joo, Hong-Jin;Lee, Kyoung-Ho;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.53-59
    • /
    • 2012
  • This study was carried out to evaluate thermal performance of the renewable hybrid heat supply system with solar thermal system and wood pellet boiler for Zero Carbon Green home of apartment houses. The hybrid heat supply system was set up at Korea Institute Energy Research in 2011. The system was comprised of the wood pellet boiler unit with heat capacity designed as 20,000kcal/hr, a $0.15m^3$ hot water storage tank for space heating, a evacuated tubular solar collector $3.74m^2$ of aperture area at the $20^{\circ}$ install angle, a $0.3m^3$ hot water storage tank. Thermal performance tests for one-house of apartment house were carried out by hot water load and heating load in winter season through the hybrid heat supply system. As a result, hot water energy supplied by the hybrid heat supply system was 11kWh in a day. Solar thermal energy portion was 2.99kWh which is 27% of the total hot water energy supply. wood pellet boiler supply portion was 8.017kWh which is 73% of the total hot water energy supply.

Estimation of Regional Agricultural Water Demand over the Jeju Island (제주도 권역별 농업용수 수요량 산정에 대한 고찰)

  • Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin-Sung;Lim, Chan-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.639-649
    • /
    • 2013
  • Over 96.2% of the agricultural water in Jeju Island is obtained from groundwater and there are quite distinct characteristics of agricultural water demand/supply spatially because of regional and seasonal differences in cropping system and rainfall amount. Land use for cultivating crops is expected to decrease 7.4% (4,215 ha) in 2020 compared to 2010, while market garden including various vegetable crop types having high water demand is increasing over the Island, especially western area having lower rainfall amount compared to southern area. On the other hand, land use for fruit including citrus and mandarin having low water demand is widely distributed over southern and northern part having higher rainfall amount. The agricultural water demand of $1,214{\times}10^3\;m^3/day$ in 2020 is estimated about 1.39 times compared to groundwater supply capacity of $874{\times}10^3\;m^3/day$ in 2010 with 42.4% of eastern, 103.1% of western, 61.9% of southern, and 77.0% of northern region. Moreover, net secured amount of agricultural groundwater would be expected to be much smaller due to regional disparity of water demand/supply, the lack of linkage system between the agricultural water supply facilities, and high percentage of private wells. Therefore, it is necessary to ensure the total net secured amount of agricultural groundwater to overcome the expected regional discrepancy of water demand and supply by establishing policy alternative of regional water supply plan over the Island, including linkage system between wells, water tank enlargement, private wells maintenance and public wells development, and continuous enlargement of rainwater utilization facilities.

Natural Radon Removal Efficiency of Small-scale Water Supply System (국내 마을상수도 지하수의 라돈 자연저감)

  • Cho, Byong-Wook;Yun, Uk;Choo, Chang-Oh
    • Economic and Environmental Geology
    • /
    • v.43 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • The purpose of this study was to understand the degree of natural radon removal efficiency of small-scale water supply systems. Six sites were selected for this study, and data on well characteristics (depth, pumping rate, water tank capacity, distance from well to tap water) were obtained. Water samples both from raw water and three tap waters at each site were collected and analyzed for radon concentration. Average radon removal efficiency of the five sites (A-E) in Nov. 2006 was 26.0% while that of the same sites in Dec. 2006 was 45.6% indicating seasonal difference in natural radon removal efficiency. Meanwhile short-term (April 23, April 30, May 8, 2007) radon removal efficiency from the site F was 44.1-49.0%, implying only a little difference in natural radon removal efficiency. The degree of radon removal at tap water was influenced mainly by pumping rate rather than distance from the well and water tank capacity.