• Title/Summary/Keyword: Water supply capacity

Search Result 367, Processing Time 0.028 seconds

Operating Strategy Optimization of Metal Hydride based Hydrogen Supply System (수소저장합금을 이용하는 수소공급시스템의 운전 방법 최적화)

  • Kim, Byung-Jun;Sung, Hae-Jung;Lee, Young-Duk;Lee, Sang-Min;Cho, Ju-Hyeong;Ahn, Kook-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.625-633
    • /
    • 2011
  • Characteristics of a commercial metal hydride (MH) hydrogen supply system have been investigated and an operating strategy was developed based on the experimental data. As a prior step, charging/discharging capacity, thermal properties such as heat capacity, heat of reaction of MH system were experimentally measured. And then P-C-T data for various operating conditions were collected and a correlation between P, C and T predicting the behavior of MH was derived. Based on the basic experimental data, an operating strategy of MH system was developed, in which the hot water temperature supplied into the water jacket of MH was controlled depending on the pressure of MH, thereby the pressure of MH could be maintained at a suitable range. By adjusting the temperature of hot water from $40^{\circ}C$ to $60^{\circ}C$, the maximum discharging capacity of hydrogen could be increased by 4.7%, and consequently more stable hydrogen supply and longer operation time of fuel cell system could be achieved.

Assessment of Rainwater Harvesting Potential in Ibadan, Nigeria

  • Lade, Omolara;Oloke, David
    • Environmental Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.91-94
    • /
    • 2013
  • Recently Ibadan in southwestern Nigeria has been facing severe water shortage due to the increase of population, social and economic activities. In order to meet the shortfall, attempts to utilize rainwater harvesting (RWH) have been made to provide an alternative source of water supply. A desk study was conducted to review various RWH technologies locally, regionally and globally. A hydrological analysis was also carried out using rainfall data for 30 years from two meteorological stations, with the aim of providing a more sustainable RWH system for water supply to private individuals, organizations, and government agencies. RWH is found to be technically feasible based on the prevailing rainfall pattern with over 90% of households having a rooftop constructed from technically appropriate materials. Results of the study indicate that an average roof of $80m^2$ will collect 82,835 L/yr (45 L/person/day) for a family of five people which is about the required water demand for drinking and cooking purposes. Hence, the capacity of storage tanks and the catchment area required for an all-purpose water supply system based on RWH are quite large. These can be reduced to affordable sizes, by collecting and storing water for cooking and drinking only while non-potable uses are supplemented by water from other sources. However, it must be highlighted that due to the type of roofing material, rainwater should go through proper treatment in order to be used for potable purposes. This study clearly shows that Ibadan city has a good rainwater harvesting potential.

Particle Removal in a Rainwater Storage Tank, and Suggestions for Operation & Design (빗물저장조에서 입자의 제거특성 및 운전과 설계시 고려사항)

  • Mun, Jungsoo;Yoo, Hyoungkeun;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2007
  • A rainwater utilization facility consists of its catchment area, treatment facility, storage tank, supply facility and pipes in general. The rainwater storage tank which occupies the largest area of the facility has been usually considered quantitatively for determining the storage capacity. Hence, there is little information on water quality improvement by sedimentation in a rainwater storage tank in operation. In this study, we measured the rainwater quality in a rainwater storage tank in operation during late spring and summer, and showed water quality improvement of turbidity removal of 25~46% by sedimentation in a rainwater storage tank under a fixed water level without inflow and outflow after runoff ceased. It is necessary to have a considerable distance between the inlet and outlet of the tank and, if possible, it is recommended that the design should allow for an effective water depth of over 3 m and supply rainwater near the water surface. The operation method which increases the retention time by stopping rainwater supply for insuring low turbidity is recommended when the turbidity of rainwater runoff is high. And also more efficient operation and maintenance of the rainwater utilization facility is expected through the tailored design and operation of the facility considering particle removal and behavior.

Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery (Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Jang, Min-Won;Hong, Eun-Mi;Kim, Taegon;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.

Design, manufacture and field test of a surface water storage tank providing irrigation water to upland crops

  • Shin, Hyung Jin;Kim, Young-Joon;Lee, Jae Young;Kim, Hwang-Hee;Jo, Sung Mun;Cha, Sang Sun;Hwang, Seon-Ah;Lee, Seung-Kee;Park, Chan Gi
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1057-1069
    • /
    • 2020
  • For most upland crops in Korea, underground water is used to ensure an adequate water supply. Thus, surface water storage tanks are needed to supply surface water from reservoirs or streams. This study discusses the design, manufacture and monitoring of a water storage tank capable of reliably supplying water to crops and preventing the inflow of floating debris. The study was conducted in an apple orchard in Yesan-gun, Chungcheongnam-do in Korea. Based on the water requirements of the crops and size of the orchard, a required flow volume of about 0.6 ㎥·h-1 was determined, along with a surface water storage tank capacity of 1.2 ㎥. Following a comparison with other materials, stainless steel (STS) was used to construct the water tank. The tank was designed to provide 14 hours of irrigation, enabling a small-capacity, cost-efficient tank design to be used. A surface water irrigation test was performed using the surface water storage tank. The average surface water irrigation flow rate was 0.00045 ㎥·m-2·h-1. The water quality test showed that the pH, suspended solids (SS), total nitrogen (TN), and total phosphorus (TP) values satisfied the reference values for agricultural water. The test results showed that the surface water storage tank evaluated in this study allows for crop irrigation when there is a lack of groundwater during droughts.

Utilization of Peace Dam for Conservation Purpose (이수측면에서 평화의댐 활용방안 연구)

  • Yi, Jae-Eung;Lim, Dong-Sun;Lee, Jong-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.653-662
    • /
    • 2004
  • In this study, the method of Increasing the flood control as well as conservation effects is studied by joint operation of Hwacheon and Peace Dam. After completing the second phase of the construction of the Peace Dam, the dam crest height will be increased from 225m and the storage capacity will also be increased. If storage capacity is increased and gates are installed, it will assist not only flood control but also conservation of the entire Han river basin. Considering the change of conservation levels, the change of the restricted water level of the Hwacheon Dam in flood season, and the inflow change into the Peace Dam through the simulated reservoir operation, the annual average power of Hwacheon Dam with 95% reliability, annual firm power, the volume of water supply is calculated. As a result, when the conservation level of the Peace Dam and the restricted water level of the Hwacheon Dam are increased, the generation capacity will be improved. However, even though the inflow decrease, the generation capacity will not be affected. If the inflow decrease under the same conditions, the water supply capability will be reduced to the range from 35% to 40%. It is necessary to increase conservation level to keep the same water supply capability.

A study of the relationship between Sedimentation and Storage requirments of reservoirs (저수지 내용적 감소가 필요저수량에 미치는 영향에 관한 연구)

  • 신일선;김재곤;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.1
    • /
    • pp.53-62
    • /
    • 1979
  • Since the first installation of irrigation Systems in Korea , a large number of small and medium sized reservoirs have been constructed as the main water sources Some 412, 000 ha are at present irrigated from these sources of supply. Many of the reservoirs were designed in accordance with old low standards and have in addition suffered a loss in capacity through sedimentation. At the same time, water demand has increased with the in troduction of high yielding varieties of rice. The combination has resulted in severe water deficits. To study the problem, 16 sample reservoirs have been surveyed and analysed. The results of the study are summarized be low: 1. Average decrease in reservoir capacity from the installation to present-8% 2. Average soil erosion loss (m$^3$/km$^2$/year) is 536 m$^3$/km$^2$/year and average erosion depth of soil is 0. 5mm per year. 3. No relationship, between reservoir capacity per unit of watershed (m$^3$/km$^2$) and soil erosion loss was found. 4. Increases are required in reservoir capacity: 15.8% due to the introduction of HYV's; 16.6% due to the change of system losses from 10%to 25% The conclusion to be drawn from the above results is that existing reservoir capacity should be increased by an average of 32%. The unit storage capacity to be adopted should be 661 mm

  • PDF

Investigation of Water Quality and Irrigation Water Use Possibility of Reservoirs Near Saemangeum for Upland and Horticultural Fields (전작.원예단지 조성을 위한 새만금 인근 주요 저수지의 수질조사 및 용수이용 가능성 연구)

  • Song, Jae-Do;Son, Jae-Gwon;Choe, Jin-Gyu;Kim, Yeong-Ju
    • KCID journal
    • /
    • v.14 no.2
    • /
    • pp.214-224
    • /
    • 2007
  • This study was carried out to investigate of water quality and irrigation water use possibility of reservoirs near Saemangeum for upland and horticultural fields. Water samples were taken at 6 reservoirs for 5 months from June, 2006 to November, 2006. The water temperature, pH, EC, EC, chlorophyll - a of 6 reservoirs were ranged 8.7-$31.2^circC$, 6.9-9.2, 73.0-637.0$\mu$S/cm, 0.9-443.2mg/$m^3$, respectively. The concentration of DO, BOD, COD, T-N, T-P and SS were ranged 5.7-11.7mg/L, 0.5-8.9mg/L, 2.9-18.0mg/L, 0.07-6.52mg/L, 0.002-0.406mg/L, 0.5-54.0mg/L Also, storage ratio and storage capacity of Mije reservoir, Okgu reservoir, Oknyeo reservoir, Neungje reservoir were decreased between June and April, but those of Oksan reservoir was kept high during irrigation period. Water supply of reservoirs was 4,474,100$m^3$(Oksan), 6,165,900$m^3$(Mije), 13,209,900$m^3$(Okgu), 4,675,600$m^3$(Oknyeo), 7,682,000$m^3$(Neungje), 19,231,000$m^3$(Cheongho) in 2006, respectively. It is resevoirs for upland and horticultural fields that use main irrigation water resources before Saemanguem fresh-water lake development, and use assistance irrigation water resources in emergency after Saemanguem fresh-water lake development. In the meantime, for continuous use of reservoir as irrigation water resource for upland and horticultural fields, we must examine about surplus water capacity, and need investigation about supply possibility of irrigation water, condition of irrigation water, water quality.

  • PDF

A Study on Vegetated Embankment Slope Reinforcement Using A Synthetic Resine Based Net-hose System (합성수지 소재 네트호스 시스템을 이용한 성토사면 녹화 보강에 대한 연구)

  • Baek, Yong-Gi;Lee, Min-Kyu;Ahn, Jaehun;Oh, Jeongho
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.8-13
    • /
    • 2015
  • This study investigates the application of a synthetic resine based net-hose system to sustain vegetated embankment slope reinforcement. The net-hose system is designated to improve water supply to the vegetation that can suffer the lack of water in case of extreme drying condition or rock slope where water supply is relatively insufficient to ensure the growth of vegetation. A series of laboratory tests were conducted to check the structural adequacy and effectiveness of net-hose system. The results indicated that the model slope equipped with net-hose system seemed to provide better water supply resulting in more vegetated areas and higher matric suction due to active water uptake capacity, which might be contributed to greater shear strength of slope surface. A limited numerical analysis was conducted to verify the effect of water uptake on vegetated root system that generally yields better slope stability.

A Study of Design factors for Increasing Energy Production in Small Hydro power with Using Long Pipe (장대관로를 이용한 소수력 발전량 향상을 위한 설계요소에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1134-1139
    • /
    • 2014
  • Recently the need for renewable energy development is expanding due to the global climate change, the environmental issues and the limited fossil energy resources. Dependence of energy on overseas is high in Korea. To resolve the environmental problems and to improve the energy independence rate, the development of renewable energy is more required. The small hydro power, one of the renewable energy resources, has been developing and operating from a long time ago. If we are new developing a small hydro power with the use existing dams and reservoirs, we will design the length of inlet pipe and the diameter suitable for it. However, in case of using the existing water supply pipe which had been designed suitable for water service, the designer has to review and check that the pipe is suitable for operating a generator. In this paper, the design of small hydro power using the existing long pipe of water supply, we suggest the optimum way to reduce the water hammer in pipe which causes the unsteady flow during the load-shutdown of generator, the generator operation plan for the stable supply of water and the design factor of determining the generator capacity through the analysis between discharge and head-loss.