• Title/Summary/Keyword: Water supply and storage reliability

Search Result 31, Processing Time 0.029 seconds

Parallel Reservoir Analysis of Drought Period by Water Supply Allocation Method (공급량 배분기법을 이용한 갈수기 병렬저수지 해석)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.261-269
    • /
    • 2006
  • In this study, an optimization technique was developed from the application of allocation rule. The results obtained from the water supply analysis and reliability indices analysis of Andong dam and Imha dam which are consist of parallel reservoir system are summarized as the followings; Allocation rule(C) is effective technique at the parallel reservoir system because results of the water supply analysis, storage analysis and reliability indices analysis is calculated reasonable results. Also, reliability indices analysis results are not sufficient occurrence based reliability or quantity based reliability. Thus reliability indices analysis are need as occurrence based reliability, quantity based reliability vulnerability, resilience, average water supply deficits and average storage. And water supply condition is better varying water supply condition than constant water supply condition.

The Capability Analysis of Water Supply for the Parallel Reservoir System by Allocation Rules (저수량 배분규칙을 적용한 병렬저수지 용수공급능력 해석)

  • Park, Ki-Bum;Jee, Hong-Kee;Lee, Soon-Tak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.2
    • /
    • pp.215-224
    • /
    • 2007
  • The purpose of this study was to estimates water supply reliability indices of the water supply by Allocation Rules(AR) for parallel reservoirs. Rule (A) can be considered it as only current storage, Rule(B) can be considered it as current storage and inflow and Rule(C) can be considered it as current storage, inflow and water supply capacity. First, conditions of water supply are divided by Condition I for the monthly constant water supply and Condition II for the monthly varied water supply. Second, results of allocation coefficients are revealed the smallest different at Rule(C). The analysis of water supply showed that the capability of water supply is superior to the Rule(B), it is superior to the Rule(C) on the base of the balance of water supply. The reliability analysis was highly showed at the Rule(B) and Rule(C). A methodology for the analysis of water supply was developed and applied to the parallel reservoir system from this research, The operation rule for the parallel reservoir can be slightly modified and successfully applied to the different kinds of the parallel reservoir system.

Evaluation of Irrigation Vulnerability Characteristic Curves in Agricultural Reservoir (농업용 저수지 관개 취약성 특성 곡선 산정)

  • Nam, Won-Ho;Kim, Taegon;Choi, Jin-Yong;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.39-44
    • /
    • 2012
  • Water supply capacity and operational capability in agricultural reservoirs are expressed differently in the limited storage due to seasonal and local variation of precipitation. Since agricultural water supply and demand basically assumes the uncertainty of hydrological phenomena, it is necessary to improve probabilistic approach for potential risk assessment of water supply capacity in reservoir for enhanced operational storage management. Here, it was introduced the irrigation vulnerability characteristic curves to represent the water supply capacity corresponding to probability distribution of the water demand from the paddy field and water supply in agricultural reservoir. Irrigation vulnerability probability was formulated using reliability analysis method based on water supply and demand probability distribution. The lower duration of irrigation vulnerability probability defined as the time period requiring intensive water management, and it will be considered to assessment tools as a risk mitigated water supply planning in decision making with a limited reservoir storage.

The Study of Reservoir Operation for Drought Period (가뭄기간의 저수지 운영방안에 관한 연구)

  • Park Ki-Bum;Lee Soon-Tak
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1041-1048
    • /
    • 2004
  • In this study the results of optimal water supply analysis by operating constraints of reservoirs during drought period are as follows. During drought period, water supply reliability is possible about $97\~61{\%}$ by CASE 1-CASE 5. Water supply reliability is possible about $97.3{\%}$ in case of the Andong dam and $87.7{\%}$ in case of the Imha dam by CASE 3. Also, under the constraints of CASE 4, water supply reliability is possible about $87.5{\%}$ in case of the Andong dam and $73.3{\%}$ in case of the Imha dam. The reason what low of available water supply ratio is decreased inflow of Imha dam. When compare standard deviation of average storage with standard deviation of storage, stable storage can be secured during successive drought period. And it also can minimize shortage of water during drought. therefore, it is impossible that reservoir supply sufficient water but change of operating condition is better than pervious on that followed by full reservoir level. It is need that the study for optimal water supply during drought period has to be continued.

A Study of Parallel Reservoir Integrated Operation considering Storage (저류량을 고려한 병렬저수지 연계운영)

  • Park, Ki-Bum;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1176-1181
    • /
    • 2006
  • The purpose of this study was to estimate water supply analysis and reliability indicators by using allocation rule(AR) about Andong Dam and Imha Dam which have parallel reservoirs system. According to the analysis results of allocation rule, for Rule(A) and Rule(B), the contribution of water supply in Andong Dam was 60% more than in Imha Dam, and for Rule(C), the contributions in Andong Dam and Imha Dam were almost equal. In Rule(C), supply is allocated by the ratio which divides the sum of storage and inflow by the mean storage according to the storage state and supply capability state of Andong Dam and Imha Dam. This Rule(C) showed good results in the water supply capability analysis and reliability analysis of parallel reservoirs. In the analysis criteria of water supply in parallel reservoirs system, monthly water change quantity showed better results than monthly constant water quantity in water supply analysis. On the basis of this study, the new technique for water supply analysis was developed to be applied to parallel reservoirs, and this operation rule will establish the efficient operation measures in the application to several kinds of parallel reservoirs system.

  • PDF

Operation Rule Curve for Reservoir with Low Areal Ratio of Watershed to Downstream Paddy Field (유역배율이 작은 저수지의 이수관리방법)

  • Noh, Jae-Kyoung
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.68-80
    • /
    • 2011
  • To provide a operation rule curve for reservoir with low ratio of watershed area to paddy field area, Duckyong reservoir with watershed area of $15.8km^2$ and paddy field area of 1,071ha was selected, in which 4 meters are being heightened and full water levels will be increased from EL.26.0m to EL.30.0m, total water storages from 365.6M $m^3$ to 708.0M $m^3$. There was no operation rule curve that satisfied over 90% reliability of water supply in reservoir with watershed area of 1.48 times of paddy field area. The differences between observed and simulated reservoir daily water storages were minimized to determine parameters for simulating reservoir inflow in case of paddy field area of 550ha from 1991 to 2010. A operation rule curve was drawn to have a maximum storage with total water storage, which was in paddy field area of 700ha with ratio of 2.3 between watershed area and paddy field area. This case showed that annual irrigation water supply was 668M $m^3$ and instream flow of 57M $m^3$, water supply reliability of 55.6% in normal operation, and annual irrigation water supply was 605M $m^3$ and instream flow of 38M $m^3$, water supply reliability of 95.6% in withdrawal limited operation. Water supply reliabilities showed 35.6% without flood regulation and 17.8% with flood regulation in existing reservoir before heightening.

  • PDF

Comparison of Water Supply Reliability by Dam Operation Methods (댐 운영방식에 따른 이수안전도의 비교)

  • Choi, Si Jung;Lee, Dong-Ryul;Moon, Jang Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.523-536
    • /
    • 2014
  • A water supply reliability is mainly influenced by water demand, reservoir storage, and inflow change caused from drought. The water supply reliability can vary depending on the method of dam operation. In Korea, the deficit-supply method which complements water deficit as water shortage occurs in downstream areas has been used for the national water resources master plan using K-WEAP, but the prime flow method, an alternative approach, would show different results of water supply reliability in comparison to the deficit-supply method. The objective of this research is to compare and analyze differences in water supply reliability according to dam operation methods. These results can be used to re-evaluate water supply reliability of dam in a circumstance considering steady dam release for instreamflow in downstream and hydroelectric power generation.

Analysis of Parallel Reservoir Water Supply Capacity According to Water Supply Changes (용수공급 변화에 따른 병렬저수지 용수공급 능력 해석)

  • Jea Min Park;Ki bum Park
    • Journal of Environmental Science International
    • /
    • v.32 no.10
    • /
    • pp.675-684
    • /
    • 2023
  • In this study, the water supply reliability of the andong and Imha dam was analyzed using inflow data for 360 months from 1993 to 2022 through allocation model. First, in the analysis results of additional water supply to Deagu city, the water supply reliability of Rule (B) was the highest at 86% for andong dam, 84% for imha dam, and 80% for the control point. However, when the planned supply was supplied, the analysis results showed 94%, 93%, and 90%. Next, in the quantitative reliability analysis results, when considering additional water supply to Deagu city, Rule (A), Rule (B), and Rule (C) were analyzed as 88%, 88%, and 88%, respectively, based on the control point. When supplying the planned water supply, the quantitative reliability analysis results were 95% equally based on Rule (A), Rule (B), and Rule (C). Because of evaluating the two reliability methods, the number of shortages increases significantly when additional water is supplied to Daegu City, but the shortage is generally 5-7%, resulting in a relatively small shortage compared with the increase in the number of shortages. In the case of resilience and vulnerability, additional water supply to Daegu City takes more than two months to restore than the existing planned water supply, and the average shortage was calculated to be smaller than that of supplying the planned water. According to the results of the analysis, Andong dam has an average water storage of 130x106 m2 and Imha dam has 50x106 m2. In this deficient water supply can be compensated by water from the Nakdong river.

Analysis of the Emergency Water Supply Capacity in Agricultural Reservoirs Using K-HAS and Ratio Correction Factors (K-HAS와 비율보정 계수를 이용한 농업용 저수지의 비상연계 용수공급 가능량 분석)

  • Kim, Hayoung;Lee, Sang-Hyun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.59-71
    • /
    • 2023
  • As the frequency of drought increases due to climate change, water scarcity in agriculture would be a main issue. However, it seems difficult to solve the water scarcity by securing alternative water sources. The aim of this study is to analyze optimal water supply capacity of agricultural reservoir for emergency operation connecting reservoirs and dams. First, we simulated the water storage of agricultural reservoir playing the role emergency water supplier to other water facility such as dams and other reservoirs. In particular, the results of simulation of water storage through K-HAS model was calibrated using the optimization process based on ratio correction factors of outflow and inflow. Finally, the optimal amount of water supply securing water supply reliability in emergency interconnection operation was analyzed. The results of this study showed that Janchi reservoir could supply 12.8 thousand m3/day maintaining 90 % water supply reliability. The result of this study could suggest the standard for connecting water facilities as emergency water supply.

Evaluating Future Stream Flow by Operation of Agricultural Reservoir Group considering the RCP 8.5 Climate Change Scenario (RCP 8.5 기후변화 시나리오를 고려한 농업용 저수지군 운영에 따른 미래 하천유량 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.113-122
    • /
    • 2015
  • This study aims to evaluate future stream flow by the operation of agricultural reservoir group at the upper stream of the Miho River. Four agricultural reservoirs with storage capacities greater than one million cubic meters within the watershed were selected, and the RCP 8.5 climate change scenario was applied to simulate reservoir water storage and stream flow assuming that there are no changes in greenhouse gas reduction. Reservoir operation scenarios were classified into four types depending on the supply of instream flow, and the water supply reliability of each reservoir in terms of water supply under different reservoir operation scenarios was analyzed. In addition, flow duration at the watershed outlet was evaluated. The results showed that the overall run-off ratio of the upper stream watershed of the Miho River will decrease in the future. The future water supply reliability of the reservoirs decreased even when they did not supply instream flow during their operation. It would also be difficult to supply instream flow during non-irrigation periods or throughout the year (January-December); however, operating the reservoir based on the operating rule curve should improve the water supply reliability. In particular, when instream flow was not supplied, high flow increased, and when it was supplied, abundant flow, ordinary flow, and low flow increased. Drought flow increased when instream flow was supplied throughout the year. Therefore, the operation of the agricultural reservoirs in accordance with the operating rule curve is expected to increase stream flow by controlling the water supply to cope with climate change.