• 제목/요약/키워드: Water storage capacity

검색결과 626건 처리시간 0.029초

바다방석고둥육의 동결저장중 단백질조성과 근육조직의 변화 (Changes of Protein Composition and Muscle Tissues in Top Shell Meat during Frozen Storage)

  • 송대진;김창용;박환준
    • 한국식품영양과학회지
    • /
    • 제22권6호
    • /
    • pp.763-770
    • /
    • 1993
  • To investigate the quality changes during frozen storage, top shell, Omphalius pfeifferi capenteri, was stored at -18$^{\circ}C$, -$25^{\circ}C$ and -3$0^{\circ}C$ immediately after shelling and water holding capacity, protein composition and histological features were examined with the lapsed period of the storage. During the storage period, amount of free drip was increased with higher frozen temperature and longer frozen period, but with the longer storage period, the lower water holding capacity was observed. The extractability and composition of muscle protein, sarcoplasmic protein and stroma protein were rather stable regardless of frozen temperature and frozen storage period. However, the extractability of myofibrillar protein was decreased with higher frozen temperature and longer frozen storage period. On the changes of muscle tissue structure, following points were observed. 1) In the muscle tissue structure of fresh sample, fine muscle fiber was closely distributed all over the tissue regardless of cross and longitudinal section. 2) In tissue structure under frozen state, it was observed that ice crystals apparently grew with the higher storage temperature. Empty spaces between muscle bundles which wee formed by aggregations of muscle fiber were observed after 3 months storage at -18$^{\circ}C$ . 3) Tissue structure in thawed state was restored satisfactorily after 1 month storage regardless of storage temperature. After 3 months storage at -3$0^{\circ}C$, muscle tissue was well restored, but at -18$^{\circ}C$, empty spaces were apparent due to incomplete restoration.

  • PDF

기존 도시의 홍수저감을 위한 우수관거 배수용량 증대 및 지하 빗물저류조 설치효과 비교 분석 (Comparative Analysis of the Storm Sewer Expansion Methodology and Underground Rainwater Storage Tanks for Urban Flood Control)

  • 이호열;서규태;이택순
    • 한국물환경학회지
    • /
    • 제29권6호
    • /
    • pp.754-761
    • /
    • 2013
  • Urban floods are usually caused by the lack of drainage capacity. Hence, sewer capacity expansion methodology by replacing small pipes with bigger ones is primarily applied as a flood control measure. However, this approach is often unreasonable because of the costs and time involved. Thus, the installation of underground rainwater storage tanks with the two advantages of flood control and water conservation is proposed. This study compared the effectiveness of flood control by both the sewer expansion methodology and rainwater storage tanks using the Storm Water Management Model. Three cases were simulated in this study. The first case analyzed flood reduction by the storm sewer expansion methodology. The simulation results indicate that the overflow volume from manholes was reduced by 49% with this methodology. The second case analyzed flood reduction by installation of rainwater storage tanks. The simulation results indicate that the overflow volume was reduced by 62%. However, these two cases could not prevent urban floods completely. Hence, the third case analyzed the joint application of the storm sewer expansion methodology and rainwater storage tanks. In this simulation, flooding did not occur. Consequently, the results of this study clearly show that underground rainwater storage tanks are more effective for flood control than capacity expansion of storm sewer. Furthermore, the joint application of these two flood control measures is more effective than their separate application.

Sentinel-2 위성영상을 활용한 농업용 저수지 가용수량 추정 (Estimation of Water Storage in Small Agricultural Reservoir Using Sentinel-2 Satellite Imagery)

  • 이희진;남원호;윤동현;장민원;홍은미;김태곤;김대의
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.1-9
    • /
    • 2020
  • Reservoir storage and water level information is essential for accurate drought monitoring and prediction. In particular, the agricultural drought has increased the risk of agricultural water shortages due to regional bias in reservoirs and water supply facilities, which are major water supply facilities for agricultural water. Therefore, it is important to evaluate the available water capacity of the reservoir, and it is necessary to determine the water surface area and water capacity. Remote sensing provides images of temporal water storage and level variations, and a combination of both measurement techniques can indicate a change in water volume. In areas of ungauged water volume, satellite remote sensing image acts as a powerful tool to measure changes in surface water level. The purpose of this study is to estimate of reservoir storage and level variations using satellite remote sensing image combined with hydrological statistical data and the Normalized Difference Water Index (NDWI). Water surface areas were estimated using the Sentinel-2 satellite images in Seosan, Chungcheongnam-do from 2016 to 2018. The remote sensing-based reservoir storage estimation algorithm from this study is general and transferable to applications for lakes and reservoirs. The data set can be used for improving the representation of water resources management for incorporating lakes into weather forecasting models and climate models, and hydrologic processes.

연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구 (A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques)

  • 조덕준;김명수;이정호;김중훈
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.

태양열(太陽熱) 급탕(給湯)시스템의 최적설계(最適設計) 조건(條件)의 설정(設定)과 경제성(經濟性) 평가(評價)에 관한 연구(硏究) (A Study on the Establishment of Optimum Design Conditions and Economic Evaluation for Rot Water Heating Solar Energy System)

  • 이영수;이기우
    • 태양에너지
    • /
    • 제6권1호
    • /
    • pp.47-59
    • /
    • 1986
  • This paper presents the establishment of optimum design conditions and economic evaluation for solar hot water system. The aim of this study is to present thermal performance of solar heating systems and to determine their performance as a function of collector size, storage capacity, tilting of collector and other factors. By analyzing its performance under the various conditions, optimum design of solar heating system can be obtained. System performance are obtained monthly and yearly basis respectively. At the same time the economics of various systems are evaluated. For the computer simulation Mokpo, Kangnung, Chupungnyong and Seoul are selected for particular installation places. As a result, the optimal design condition of solar heating system considering the following factors such as installation angle of collector, capacity of storage tank, collector size in each place can be obtained as follows; (1) Installation angle of collector Tilt = lattitude (2) Capacity of storage tank Solar domestic hot water system : $45\;1/m^2$ Multifamily solar domestic hot water system : $35\;1/m^2$ (3) Collector size i) Solar domestic hot water system Seoul & Chupyungyong area : $11.52\;m^2$ Mokpo area : $8.64\;m^2$ ii) Multifamily solar domestic hot water system Seoul, Chupyungyong & Mokpo area : $345.6\;m^2$ Kangnung area : $259.2\;m^2$

  • PDF

Prediction of sediment flow to Pleikrong reservoir due to the impact of climate change

  • Xuan Khanh Do;ThuNgaLe;ThuHienNguyen
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.38-38
    • /
    • 2023
  • Pleikrong reservoir with a concrete gravity dam that impound more than 1 billion cubic meter storage volume is one of the largest reservoir in Central Highland of Vietnam. Sedimentation is a major problem in this area and it becomes more severe due to the effect of climate change. Over time, it gradually reduces the reservoir storage capacity affecting to the reliability of water and power supply. This study aims to integrate the soil and water assessment tool (SWAT) model with 14 bias-corrected GCM/RCM models under two emissions scenarios, representative concentration pathway (RCP) 4.5 and 8.5 to estimate sediment inflow to Pleikrong reservoir in the long term period. The result indicated that the simulated total amount of sediment deposited in the reservoir from 2010 to 2018 was approximately 39 mil m3 which is a 17% underestimate compared with the observed value of 47 mil m3. The results also show the reduction in reservoir storage capacity due to sedimentation ranges from 25% to 62% by 2050, depending on the different climate change models. The reservoir reduced storage volume's rate in considering the impact of climate change is much faster than in the case of no climate change. The outcomes of this study will be helpful for a sustainable and climate-resilient plan of sediment management for the Pleikrongreservoir.

  • PDF

댐 비상방류 설계기준 선정을 위한 수리수문학적 검토(II) (Hydraulic & Hydrologic Design Criteria for an Emergency Drainage of Reservoir (II))

  • 이재응;손광익;강민석
    • 한국수자원학회논문집
    • /
    • 제48권3호
    • /
    • pp.159-167
    • /
    • 2015
  • 댐 운영에 있어서 저수지 초기 담수 시 또는 집중호우 등에 의한 급격한 수위 상승 방지나 운영 중에 댐체 점검 및 수리 또는 자연재해로 인한 위급한 상황 발생 등 저수지를 비워야 할 상황이 발생할 수 있으며, 이에 대한 대책으로 비상 시 방류할 계획 및 설비가 필요하다. 그러나 현재 국내에는 이러한 비상방류에 대한 기준이 미비한 실정이다. 본 연구에서는 댐 안정성 제고를 위해 유사시 저수지 저류량을 안전하게 배제시킬 수 있는 비상방류 설비를 저수지 모의 모형인 HEC-ResSim 모형을 이용하여 규모 및 배제일수에 대하여 모의하고 산정하였다. 저수지 규모에 따라 세 개의 댐에 대해 검토하였다. 대상댐은 저류용량을 기준으로 10억 $m^3$ 이상인 소양강댐과 1~10억 $m^3$ 댐으로 합천댐, 1억 $m^3$ 미만의 댐으로 대곡댐을 선정하여, 방류시설의 규모를 산정하고 배제일수를 모의하여 기준의 적정성과 적용 가능성에 대해 검토하였다.

우리나라 관개용 흙댐 저수지의 외형적 제특성에 관한 연구 (A Study on the Physical Characteristics of Irrigation Reservoirs in Korea)

  • 정두희;안병기
    • 한국농공학회지
    • /
    • 제25권4호
    • /
    • pp.29-37
    • /
    • 1983
  • This study was carried out not only to prepare available materials that can be utilized in basic planning of irrigation reservoirs, but also to contribute to the study on countermeasures for reasonable irrigation water development in Korea in the future, through the investigation for the structural characteristics of reservoirs and their change trend by an epoch. During this study 123 sites of sample reservoirs were analysed in their dimensions of physical constituent factors. The physical characteristics and their change trends revealed by this study are summarized as follows: 1. For the irrigation earth dam in Korea the correlation between dam volume (v) and dam height & length (H$^2$L) can be described as the formula of v=1. 434H2L~17, 300 (r=0. 933), from which embankment amount is assumed to be quickly estimated under determined dam height and length of the proposed reservoir. 2. The ratio of dam volume to dam height & length ranges approximately from 0.5 to 3 (1.7 in average), that of storage capacity to dam volume 2 to 10 (8.4 in average), that of irrigation area to full water surface area 5 to 20 (13 in average) and that of catchment area to irrigation area 2 to 5 (4 in average). Though correlation between dam volume and dam height & length is high, that between others is relatively low. 3. Average storage depth ranges approximately from 4m to l0m (6.6m in average), unit storage capacity 0. 4m to 0. 8m (0.54 in average) and shape factor of dam 5 to 20 (10.5 in average). 4. The more recently planned the reservoirs were, the less storage capacity, dam volume, full water surface and dam shape factor they have. 5. The more recently planned the reservoirs were, the larger storage depth and unit storage capacity they have.

  • PDF

지면 굴곡에 따른 산림 토양의 물 침투와 저류능력 비교 (Comparison of Water Infiltration and Retention Capacity in a Forest Soil of Different Surface Depression Patterns)

  • 조유리;김종호;이도원
    • 한국산림과학회지
    • /
    • 제107권1호
    • /
    • pp.108-111
    • /
    • 2018
  • 토양 표면에 요면(굴곡)을 형성하는 것은 토양의 거칠기를 증가시켜 강우의 침투와 토양의 저류능력을 향상시키고 지표수 및 토사의 유실량을 감소시키는 효과적 방법이 될 수 있다. 이 연구에서 토양 표면에 형성된 요면의 모양이 지표수의 흐름에 반구형일 때 수평 및 수직형일 때보다 침투량이 많았고, 토양의 저류능력은 수직형 요면에서 높았다. 흙 파기, 또는 토양 표면의 요면 형성은 산림 토양에서 산불 발생 후 대책으로, 또 건기 때 가뭄 스트레스를 해소하는 실용적인 방법으로 활용될 수 있다.

토지이용 시나리오별 용수공급 분석에 따른 빗물이용시설 최적 용량 결정 (Determination of Optimum Capacity Rainwater Utilizing Facilities by Analysis of the Water Supply by Land Use Scenario)

  • 임석화;김병성;류경식;이상진
    • 대한토목학회논문집
    • /
    • 제41권4호
    • /
    • pp.387-397
    • /
    • 2021
  • 우리나라 농업용수 공급은 대부분 저수지를 통한 공급 방법을 채택하고 있어 그 의존도가 매우 높다. 이에 적용 가능한 대체 수원을 활용하여 저수지 의존도를 경감시키고 안정적인 농업용수 공급이 이루어져야 한다. 따라서, 본 연구에서는 토지이용 별 시나리오를 구성하여 대체 수원인 빗물과 하수재이용수를 활용한 최적의 용수공급방안에 대하여 분석하고 빗물 이용시설의 최적 용량을 결정하는 연구를 수행하였다. 분석 결과 기존 논농사 지역을 하우스로 변경하여 빗물을 최대로 활용할 경우 안정적인 공급이 이루어졌고, 실제 빗물을 활용하고 있는 농장에서 1 mm의 강우에 약 0.82 ton의 용량이 필요한 것으로 분석되었다. 이에 최적의 시나리오를 MODSIM을 통해 결정한 빗물 저류 용량과 실제 모니터링을 통해 결정한 저류 용량을 집수면적당 저류 용량 비율로 분석한 결과 각각 약 31, 32 %로 유사하게 나타났으며, 빗물 이용시설의 최적 용량은 약 5,796,000 ton ~ 6,182,400 ton 으로 분석되었다.