• Title/Summary/Keyword: Water storage capacity

Search Result 625, Processing Time 0.031 seconds

Evaluation of Agricultural Water Supply Potential in Agricultural Reservoirs (농업용 저수지에서의 농업용수 잠재능 평가)

  • Kim, Jin Soo;Lee, Jae Yong;Lee, Jeong Beom;Song, Chul Min;Park, Ji Sung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.65-71
    • /
    • 2016
  • The new concept of agricultural water supply potential, which is mean annual turnover rate times unit storage capacity, was introduced for agricultural reservoirs. We investigated characteristics of mean annual turnover rate and unit storage capacity for agricultural reservoirs with storage capacity of over $1million\;m^3$. The curve of agricultural water supply potential represents change in mean annul turnover rate according to change in unit storage capacity. The mean annual turnover rate and unit storage capacity in the reservoirs with high minimum storage ratio are significantly higher than those in the reservoirs with low minimum storage ratio. Most of unstable water supply reservoirs showed low mean annual turnover rate or low unit storage capacity, indicating that mean annual turnover rate may be an index of stability degree for agricultural water use. The reservoirs with mean annual turnover rate of over 2 and unit storage capacity of over 0.8 m may be estimated as the stable water supply zone for 10 frequency dry year. The reservoirs with high agricultural water supply potential can belong to the wide range of stable water supply zone. The results suggest that relation between mean annual turnover rate and unit storage capacity may be used in evaluating stability degree for agricultural water supply in the reservoirs.

Study on the determination of optimum size of storage tank and intercepting capacity for CSOs reduction in urban area (도시지역 CSOs 저감을 위한 저류조 및 이송관로의 최적 용량결정에 관한 연구)

  • Lee, Kwan Yong;Choi, Won Suk;Lee, Yong Jae;Koo, Won Suk;Song, Chang Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.735-745
    • /
    • 2012
  • Storage method is one of major measures for reduction of CSOs pollutant loads and several projects have been done nationwide. But systematic analysis of intercepting capacity has not been studied to determine optimum size of storage facility. In this research, not only storage volume but also intercepting capacity which means flow capacity from intercepting facility to CSOs storage facility was studied and optimum sizing method for storage facility was proposed. The result shows that pollutants reduction efficiency can be increased significantly by increasing intercepting capacity and it might reduce storage volume and total construction costs. Intercepting capacity for the study area was evaluated and it was shown as equivalent to 83 % probability rainfall intensity.

A Hydrologic Analysis for the Infiltration Storages Planned on Jeju-do (제주도에 계획된 침투저류지의 수문학적 분석 사례)

  • Lee, Sangho;Lee, Jungmin;Kang, Taeuk;Kang, Shinuk
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1040-1048
    • /
    • 2010
  • An infiltration storage can be installed as a method of reducing runoff from catchment and increasing stream flow during the dry period by recharging groundwater. However, there is no proper model and method that can be used to design storage capacity of an infiltration storage in Korea. The purpose of the study is to evaluate capacities of infiltration storages planned on Jeju-do in Korea by modifying Storm Water Management Model (SWMM). The basic equations for the infiltration storage are same as those of the infiltration trench used in MIDUSS. Infiltration rates of the infiltration storages were first measured by double ring infiltrometers, and then the modified model was applied to evaluate adequacy for the capacities of three infiltration storages planned on Jeju-do in Korea. The application results show that the two infiltration storages with higher infiltration rates have adequate capacities to infiltrate the total water inflow to the storages. However, the other infiltration storage with lower infiltration rates has not sufficient capacity to infiltrate the total water inflow to the storage and release occurs to the downstream region. The simulation model and method applied can be used for capacity evaluation of future infiltration storages on highly pervious areas in Jeju-do.

Analysis and Estimation of Reservoir Sedimentation Using Remote Sensing and GIS

  • Sungmin Cho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.199-204
    • /
    • 2023
  • Periodic assessment of reservoir capacity is essential for better water resources management and planning for the future water use. Reservoirs and water storage structures raised on the rivers are subjected to sedimentation and he sedimentation is caused by deposition of eroded sediment particles carried by the streams. Knowledge of reservoir sedimentation is important to estimate avaliable storage capacity for optimum reservoir operation and scheduling water release. In recent years, remote sensing and GIS techniques have emerged as an important tool in carrying out reservoir capacity analysis and water management. The reduction in storage capacity as compared to the original capacity at the time of reservoir impounding is indicative of sediment deposition. In this study, the application of GIS and remote sensing techniques were applied to assess the sediment deposition, losses in the reservoir storage and the revised cumulative capacity. Satellite images covering Pyodongdong reservoir were analyzed using Erdas Imagine and ArcGIS softwares.Cumulative capacities at different levels were also calculated and we estimated that the revised live storage was 84.2Mft3 in 2021 and 64.3Mft3 in 2022 while the original capacity was 22.8 and 53.6Mft3 in 2021 and 2022.

Experimental Analysis of Water Retention Characteristics in the Litter of Different Deciduous Trees (활엽수 낙엽의 수분저류 특성에 대한 실험적 분석)

  • Li, Qiwen;Choi, Hyungtae;Lee, Eun Jai;Im, Sangjun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.2
    • /
    • pp.83-93
    • /
    • 2016
  • This study purposed to examine the water retention capacity of floor litter in deciduous forests. Water holding capacity(WHC) and interception storage capacity of Alnus hirsuta Turcz. ex Rupr., Quercus acutissima, Quercus mongolica litters were experimentally estimated. Physical characteristics of litters were also obtained to understand the relationships between water-retention capacity and litter characteristics. Experiments showed that WHC increases with specific volume of litter, varying 244.4% to 416.8% of its dry mass. Interception storage have estimated with rainfall simulation experiments. Maximum interception storage ($C_{max}$) and minimum interception storage ($C_{min}$) of litters were 220% and 138% of dry mass in Alnus hirsuta Turcz. ex Rupr., 218% and 137% in Quercus acutissima, and 240% and 156% in Quercus mongolica. Both $C_{max}$ and $C_{min}$ increased linearly with litter mass, and the values of $C_{min}$ in broadleaf litters have also linear relation to leaf area.

Water Storage Characteristics of Surface Soil by the Different Forest Floor Conditions (I) (지피상태(地被狀態)에 따른 임지(林地)의 수저유(水貯留) 특성(特性)(I))

  • Lee, Heon Ho;Lee, Chang Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.391-399
    • /
    • 1994
  • This study was carried out to investigate the water storage charateristics of surface soil by different forest floor conditions and to measure water storage capacity of forest Land at the Yeungnam University forest in Yongjang-ri, Nenam-myoen, Kyongju-gun, Kyongsangbuk-do. The study was conducted for 4 months, from June to September, 1993. The results were summarized as follows ; 1. Infiltration capacity of surface soil for each. forest floor condition was in the order : Oak forest>Oak forest removed $A_o$ layer>Pine forest removed $A_o$ layer>Pine forest>Bare land>Grasses. 2. The absolute values of infiltration capacity were increased as the rain intensity increased, while the order of infiltration capacity for each floor condition was not changed. 3. Infiltration capacity was highly correlated with surface soil hardness and todal pores. 4. Infiltration formula based on the Horton's could be estimated at each forest floor condition. 5. The model for water storage capacity of forest land expressed by infiltration capacity was estimated using total pores and soil hardness. This study indicates water storage capacity of different forest floor conditions depends on infiltration capacity. Using these formula, it was possible to calculate and estimate water storage capacity of forest land. Therefore, the result of this study will be helpful to increase water storage capacity of forest land and to manage water resources effectively.

  • PDF

Development of the Optimal Reservoir Storage Determination Model for Supplying Rural Water (농업용 저수지 설계를 위한 저수량 최적화 모형의 개발)

  • 정하우;박태선;최진용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.2
    • /
    • pp.69-80
    • /
    • 1998
  • The optimal reservoir storage capacity is needed to be determined at the stage of reservoir planning. The reservoir storage capacity should be based on water balance between demand and supply, and meet the water deficity during the growing season. However, the optimal reservoir storage capacity should be determined considering benefit-cost analysis for the project. In this study, Two models are developed. The one is the RSOM(Reservoir Storage Optimization Model), that is consisted by three submodels, MROPER (Modified Reservoir OPERation model), RESICO(REservoir SIze and the construction COst computation) model. And the other is the BECA(BEnefit-Cost Anaysis) model. For model application, three districts, Chungha, Ipsil and Edong were selected. The relative difference of B/C ratio between project planning data and estimation by RSOM is 17.9, 15.0 and 7.3% respectively, which may be applicable for water resources development feasibility planning.

  • PDF

Evaluation of Irrigation Vulnerability Characteristic Curves in Agricultural Reservoir (농업용 저수지 관개 취약성 특성 곡선 산정)

  • Nam, Won-Ho;Kim, Taegon;Choi, Jin-Yong;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.39-44
    • /
    • 2012
  • Water supply capacity and operational capability in agricultural reservoirs are expressed differently in the limited storage due to seasonal and local variation of precipitation. Since agricultural water supply and demand basically assumes the uncertainty of hydrological phenomena, it is necessary to improve probabilistic approach for potential risk assessment of water supply capacity in reservoir for enhanced operational storage management. Here, it was introduced the irrigation vulnerability characteristic curves to represent the water supply capacity corresponding to probability distribution of the water demand from the paddy field and water supply in agricultural reservoir. Irrigation vulnerability probability was formulated using reliability analysis method based on water supply and demand probability distribution. The lower duration of irrigation vulnerability probability defined as the time period requiring intensive water management, and it will be considered to assessment tools as a risk mitigated water supply planning in decision making with a limited reservoir storage.

Development of Storage Management Method for Effective Operation of Small Dams (소규모 댐의 효과적 운영을 위한 저수관리 기법 개발)

  • Kim Phil-Shik;Kim Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.27-35
    • /
    • 2006
  • Large dams are managed with operation standard and flood forecasting systems, while small dams do not have management method generally. Shortage of water resources and natural disasters due to drought and flood raised public concerns for management of small dams. Most of small dams are irrigation dams, which need diversified water uses. However, the lack of systematic management of small dams have caused serious water wastage and increased natural disasters. Storage management method and system were developed to solve these problems in small dams. The system was applied to Seongju dam for effective management. The storage management method was established considering hydrology simulation and statistical analysis using the system. This method can bring additional available water, even in the same conditions of the water demand and the supply conditions of watershed. It can improve the flood control capacity and water utilization efficiency by' the flexible operation of storage space.

Analysis on Cascade Cycle Heat Pump Application as Night Storage Heater (심야전력을 이용한 Cascade Heat Pump Cycle의 운전결과 분석)

  • JUNG, H.;HWANG, S.W.;LEE, C.H.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.113-118
    • /
    • 2011
  • To analyze and verify the effect of replacing thermal storage heater by a cascade cycle heat pump using midnight electricity was installed and tested at a customer's house in Wonju, Korea. The electric night storage heater is consist of 30kW electric heater and 2,700 liters of thermal storage water tank to supply hot water for warming house floor. The power for electric heater was cut off and hot water was only generated by cascade cycle heat pump. Current thermal storage water tank was not eliminated and electric heater wiring was modified. Some operation logic of the heat pump was also modified for proper operation. The required capacity of the heat pump and hot water temperature for given warming condition were estimated. The estimated capacity of heat pump was about 19kW and estimated hot water temperature for proper heating was at least $75^{\circ}C$.