• 제목/요약/키워드: Water speed

검색결과 2,504건 처리시간 0.029초

소형구 속도 증폭을 위한 사보조립체 디자인 최적화 연구 (A Study on the Optimization of Sabot Assembly Design for Micro Ball Velocity Multiplication)

  • 박근휘;진두한;김태연;강형;정동택
    • 한국군사과학기술학회지
    • /
    • 제23권1호
    • /
    • pp.37-42
    • /
    • 2020
  • This study is for a bulletproof experiment through speed acceleration of steel ball(2.385 mm) at the laboratory level. The secondary propulsion method is used for speed acceleration, which uses a sabot assembly consisting of a sabot body, a plunger, water, and a sabot cap. At the core of the secondary drive, it is important that the energy in the water of the private particle is transferred well to the steel ball. The experiment was conducted by selecting a plunger that pushes water and water charged with variables. judging that the longer the contact time, the greater the energy transferred to the steel ball. As a result of experiments with each variable, the amount of water does not affect the speed acceleration efficiency of the steel ball and, when the length of the plunger is increased by 200 %, the speed of the steel ball can be accelerated up to 130 m/s.

터보냉동기의 고효율 운전을 위한 협조 방식 기반의 압축기 대수제어 (Operating Number Control of Compressors Based on Cooperative Logic for a High Efficiency Centrifugal Water Chiller)

  • 정석권;임승관;류근수
    • 설비공학논문집
    • /
    • 제27권5호
    • /
    • pp.233-240
    • /
    • 2015
  • This paper discusses compressors operating number control strategy using cooperative logic to cope with variable partial load for high efficiency of a centrifugal water chiller. The cooperative logic is composed of a speed-up and speed-down controller, enabling smooth operation of compressors and equivalent distribution of thermal load in each compressor. This centrifugal water chiller design can be operated with high efficiency without incurring excessive energy waste and large transient phenomena at partial load states. Simulations in MATLAB and experiments in a real chiller system were conducted and verified the high efficiency control of a centrifugal water chiller achieved by the suggested strategy.

High-speed countercurrent chromatography를 이용한 인삼 saponin의 대량 분리 농축 (Preparative Isolation of Ginseng Saponin from Panax ginseng Root Using High-speed Countercurrent Chromatography)

  • 이창호;이부용
    • 한국식품과학회지
    • /
    • 제36권3호
    • /
    • pp.518-521
    • /
    • 2004
  • 이상계 용매시스템을 이용하여 물질을 고순도로 대량 분리 할 수 있는 기술인 countercurrent chromatography를 이용하여 인삼으로부터 생리황성 성분인 saponin을 대량 분리 농축하였다. 용매 조성별 인삼 saponin의 분배계수에 따른 인삼 saponin 분리에 적합한 용매시스템은 chloroform/methanol/water(40/39/21, v/v/v)으로 결정되었으며 HSCCC의 작동 조건은 chloroform/methanol/water 용매시스템의 하층부를 이동상으로 한 head to tail mode에서 이동상의 유속 5mL/min, 인삼추출물 injection량 $200{\mu}L$, 컬럼회전속도 800 rpm의 조건이 적합한 것으로 판단되었다. 이러한 조건하에서 분리된 인삼saponin의 양은 $550.7{\mu}g$으로 HSCCC에 주입한 인삼 추출물 $200{\mu}L$중에 존재하는 총 saponin의 양 $865.5{\mu}g$에 비교하여 전체 수율은 63.6%로 나타났으며 TLC로 각 분획의 순도를 확인할 수 있었다.

Integrated Water Resources Management in the Era of nGreat Transition

  • Ashkan Noori;Seyed Hossein Mohajeri;Milad Niroumand Jadidi;Amir Samadi
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.34-34
    • /
    • 2023
  • The Chah-Nimeh reservoirs, which are a sort of natural lakes located in the border of Iran and Afghanistan, are the main drinking and agricultural water resources of Sistan arid region. Considering the occurrence of intense seasonal wind, locally known as levar wind, this study aims to explore the possibility to provide a TSM (Total Suspended Matter) monitoring model of Chah-Nimeh reservoirs using multi-temporal satellite images and in-situ wind speed data. The results show that a strong correlation between TSM concentration and wind speed are present. The developed empirical model indicated high performance in retrieving spatiotemporal distribution of the TSM concentration with R2=0.98 and RMSE=0.92g/m3. Following this observation, we also consider a machine learning-based model to predicts the average TSM using only wind speed. We connect our in-situ wind speed data to the TSM data generated from the inversion of multi-temporal satellite imagery to train a neural network based mode l(Wind2TSM-Net). Examining Wind2TSM-Net model indicates this model can retrieve the TSM accurately utilizing only wind speed (R2=0.88 and RMSE=1.97g/m3). Moreover, this results of this study show tha the TSM concentration can be estimated using only in situ wind speed data independent of the satellite images. Specifically, such model can supply a temporally persistent means of monitoring TSM that is not limited by the temporal resolution of imagery or the cloud cover problem in the optical remote sensing.

  • PDF

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • 제13권5호
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

Theoretical Study of Coherent Acoustic Inverse Method for Bubble Sizing in Bubbly Water

  • Choi, Bok-Kyoung;Yoon, Suk-Wang
    • The Journal of the Acoustical Society of Korea
    • /
    • 제15권4E호
    • /
    • pp.3-8
    • /
    • 1996
  • The bubble size distribution is critical information to understand sound propagation and ambient noise in the ocean. To estimate the bubble size distribution in a bubbly water, the sound attenuation has been only in the conventional acoustic bubble sizing method without considering the sound speed variation. However, the effect of the sound speed variation in bubbly water cannot be neglected because of its compressibility variation. The sound attenuation is also affected by the sound speed variation. In this paper, a coherent acoustic bubble sizing inverse technique is introduced as a new bubble sizing technique with considering sound speed variation as well as the sound attenuation. This coherent sizing method is theoretically verified with the bubble distribution functions of single-size, Gaussian, and power-law functions. Its numerical test results with the coherent acoustic bubble sizing method show good agreement with the given bubble distributions.

  • PDF

The Effect of Extrusion Conditions on Water-extractable Arabinoxylans from Corn Fiber

  • Jeon, Su-Jung;Singkhornart, Sasathorn;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • 제19권2호
    • /
    • pp.124-127
    • /
    • 2014
  • The effect of feed moisture contents (30%, 40%, and 50%) and screw speed (200 rpm, 250 rpm, and 300 rpm) on the corn fiber gum (CFG) yield and soluble arabinoxylans (SAX) content of destarched corn fiber was investigated. The CFG yields and SAX contents of extruded, destarched corn fiber were higher than that of destarched corn fiber. In extruded, destarched corn fiber, increased screw speed and decreased feed moisture contents resulted in a higher SAX contents. The maximum yields of CFG obtained from extruded, destarched corn fiber were $79.1{\pm}19.0g/kg$ (30% feed moisture content) and $82.3{\pm}11.30g/kg$ (300 rpm screw speed). The highest SAX content was also observed at a screw speed of 300 rpm. The results of the present study show that water extraction and extrusion combined have the potential to increase CFG and SAX yields from corn fiber.

The Effect of Water Depth and Exercise Speed on Physiological Responses Immediately After Aquatic Squat Exercise

  • Gyu-sun, Moon
    • International journal of advanced smart convergence
    • /
    • 제13권1호
    • /
    • pp.185-193
    • /
    • 2024
  • This study aimed to investigate the immediate physiological responses, including heart rate, blood pressure, and rate pressure product (RPP), following squat exercises performed at three water depths (ground, knee depth, waist depth) and two speed conditions (60bpm speed, Max speed). The participants consisted of 10 men in their 20s with over 6 months of resistance exercise experience. For the 60bpm speed squats, participants performed 30 repetitions in 1 minute at a rate of 2 seconds per repetition, while for Max speed squats, they performed at Max speed without a set limit on the number of repetitions for 1 minute. All experiments were conducted with a random assignment. The study results showed that immediately after the aquatic squat exercise, the average heart rate, blood pressure, and cardiac load were higher in the order of knee depth, ground level, and waist depth at both 60bpm speed and Max Speed. At 60bpm speed, the heart rate was higher in the order of ground level, knee depth, and waist depth. Overall, exercise in an aquatic environment was considered to impose relatively lower physical burden compared to land-based exercise. Therefore, it is suggested that depending on individual fitness levels and exercise goals, appropriately combining aquatic exercise, which imposes lower immediate physiological burden, and land-based exercise may lead to safer and more effective exercise methods.

저속 압착 방식의 착즙기와 고속 파쇄 방식의 블랜더를 사용한 주스의 품질 변화에 대한 연구 (Quality of Fresh Vegetable and Fruit Juice produced with Low-Speed and High-Speed Juicers)

  • 김영성
    • 한국식품영양학회지
    • /
    • 제30권3호
    • /
    • pp.568-577
    • /
    • 2017
  • Vegetables and fruits contain a great deal of vitamins, minerals, dietary fiber and phytochemicals. Therefore, healthconcious consumer prefer beverage made from fresh fruits and vegetables due to their health benefits. This study was conducted to investigate differences in nutritional composition and sensory characteristics of juices depending on the apparatus used: either a low-speed juicer or high-speed blender. All ingredients could be made into juice without addition of water using the low speed juicer. However, addition of water was necessary to produce juice with the high-speed blender. Phenol and flavonoid content, were higher in juice made with the low-speed juicer than that produced with the high-speed blender and were correlated with DPPH radical scavenging ability. Protease activity of pineapples juices was not significantly different for the two methods, but protease activity of kiwi juice was about 8 times higher in juice made with low-speed juicer than that made with the high-speed blender. SOD activity also tended to be higher in the juice made with low-speed juicer. The concentration of dissolved oxygen in the juice made with high-speed blender was higher than that of juice made with a low-speed juicer and was correlated with color change. In addition, the high-speed blender caused an increase juice temperature, but temperature was not changed during use of the low-speed juicer. The noise level of the low-speed juicer was low, but the high-speed blender had high noise intensity comparable to that of railway or aircraft noise. In the sensory evaluation of juice, juice made with the low-speed juicer was preferred over juice made with the high-speed blender. As a result, the overall quality of the juice produced using the low-speed juicer was superior.

Changes in Absorbency and Drying Speed of a Quick-drying Knit Fabric by Repeated Laundering

  • Roh, Eui-Kyung;Kim, Eun-Ae
    • 한국의류학회지
    • /
    • 제34권12호
    • /
    • pp.2062-2072
    • /
    • 2010
  • This research evaluates the change of the water absorbency and drying speed of a quick-drying knit fabric by repeated laundering and laundering conditions and investigates the influence of laundering conditions on the functional properties of the knit fabric. Four factors of laundering conditions were studied: detergent, water hardness, water temperature, and frequency of rotation. Knit fabrics were washed for 25 laundering cycles in a drum-type washing machine with nine different laundering conditions derived from an orthogonal array. The properties of knit fabrics were measured with a drop absorption test, a strip test, and a drying time test. Relaxation shrinkage pointed to a change in the structural characteristics of the knit fabric. Wetting time was faster and wickability was greater in the knit fabrics that underwent 5 laundering cycles; in addition, there were no obvious changes in wetting time and wickability. The detergent was the most important factor in wetting time (40.4%) and wickability (60% or above). Water hardness, water temperature and RPM had less of an effect on wetting time and wickability. There were no significant differences between the levels of laundering conditions (except for detergent) on wetting time and wickability. Drying times with neutral and alkali were slower by repeated laundering; however, there was no obvious change in drying time. Hardness, water temperature and RPM had less of an impact on drying time.