• Title/Summary/Keyword: Water soluble silicate

Search Result 39, Processing Time 0.03 seconds

Effects of Soluble Silicon and Several surfactants on the Development of Powdery Mildew of Cucumber (수용성 규소와 몇가지 계면활성제의 오이 흰가루병 억제 효과)

  • Cho, Il-Chan;Lee, Sung-Hee;Cha, Byeong-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.306-311
    • /
    • 1998
  • Effects of soluble silicon and surfactants on the development of powdery mildew of cucumber were tested for environmentally safe powdery mildew control. Tested soluble silicon was potassium silicate$(K_2SiO_3)$ and tested commercial surfactants were Jeonchakje, Silhouette, Kaba, and Tween 20. Tested concentrations were 2, 4, 8, 16mM for the soluble silicon, 0.5 and 1.0% for Tween 20, 0.05 and 0.1% for both Jeonchakje and Kaba, and 0.03 and 0.07% for Silhouette. Water dilutions of tested materials were sprayed on cucumber (Cucumis sativus) leaves once a week for 4 weeks. From 3 days after the second spray, the diseased area and the numbers of fungal colony were measured from the treated leaves for 6 times at 3-4 days interval. Powdery mildew was less severe on treated cucumber compared to distilled water-treated cucumber (check). In all treatments, diseased area index was proportional to the number of the fungal colony. At the end of investigation, there was severe powdery mildew on check cucumbers. Average 30% of a leaf was colonized by powdery mildew fungus and the average number of the fungal colony per leaf reached to more than 70. On the other hand, none of the treated cucumber suffered severe powdery mildew. The treatments including 8 and 16mM of soluble silicon, doubled concentration of Kaba, and 0.5 and 1.0% of Tween 20 showed more than 80% of control effect compared to water-treated cucumber. In addition, no phytotoxicity was found. Potassium silicate and Tween 20 showed the possibility to replace chemical pesticides for the control of powdery mildew.

  • PDF

Reducing Phosphorus Release from Paddy Soil by Coal Ash and Phospho-Gypsum Mixture

  • Lee, Chang-Hoon;Lee, Yong-Bok;Lee, Hyub;Ha, Byung-Yun;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.12-16
    • /
    • 2005
  • As a silicate source to rice, a coal ash was selected and mixed with phosphor-gypsum (50:50, wt $wt^{-1}$) to reduce the potential of boron toxicity and to supply calcium element. We expected that high con tent of calcium in this mixture might convert water-soluble phosphorus to less soluble forms and then reduce the release of soil phosphorus to surface runoff. The mixture was applied with the rate of 0, 20, 40, and 60 Mg $ha^{-1}$ in paddy soil (Nagdong series, a somewhat excessively drained loamy fine sand) in Daegok, Jinju, Korea The mixture reduced significantly water-soluble phosphorus (W-P) in the surface soils by shifting from W-P and Fe-P to Ca-P and Al-P during whole rice cultivation. In contrast with W-P, plant available phosphorus increased significantly with the mixture application due to high content of phosphorus and silicate in the mixture. The mixture of coal ash and phosphor-gypsum (50:50, wt $wt^{-l}$) would be a good alternative to reduce a phosphorus export in rice paddy soil together with increasing rice yields.

Effect of Water Soluble Silicate Fertilizers on Stem Strength and Yield of Paddy Rice (수용성 규산질 비료의 시용에 의한 벼 줄기 강도 강화와 수량에 대한 효과)

  • Lee, Seung Been;Joo, Jin Ho;Shin, Joung Do;Kim, Chang Gyun;Jung, Yeong Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1017-1021
    • /
    • 2012
  • A field experiment was conducted to evaluate effect of water soluble silicate fertilizer (WSS) application on rice plants with respect to comparing with powdery slag-originated silicate fertilizer (PSS) and granular one (GSS). The 30-day seedlings were transplanted on May 10, 2012. The plot size was $25m^2$, and the planting density was 15 hills $m^{-2}$. The standard application level was $2kg\;ha^{-1}$ for WSS, $200kg\;ha^{-1}$ for GSS, $200kg\;ha^{-1}$ for GSS. The application rates were 50 %, 100 %, and 200 % of the standard levels. The soil and plant samples were taken after harvest on September 10. Strength weight of the stem was measured on the center of the 5-cm of the fourth internode. Nutrient contents and yield of grains and were evaluated. The strength weight of the stem was positively correlated with the silicate content of the stem with the highly significant $R^2$ of 0.601. The strength of the stem was satisfactorily enforced by application of 50 % WSS and GSS, and 100 % PSS. Application of 50 % or 100 % of WSS showed little difference in rice yield in comparison with application of 100 % of PSS or GSS. Therefore, application of $20kg\;ha^{-1}$ of WSS would be recommendable for rice cultivation which enforced stem strength, and increased yield of rice.

Effect of Lime and Temperature on the Changes of Available Soil Nutrients in Acid Sulfate Soil under Submergence (특이산성토양(特異酸性土壤)에서 담수시(湛水時) 석회처리(石灰處理) 및 온도조절(溫度調節)이 토양(土壤)의 유효성분(有效成分) 변화(變化)에 미치는 영향(影響))

  • Kang, Ui-Gwm;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.282-288
    • /
    • 1985
  • This experiment was conducted to investigate the changing patterns of the available elements by the control of lime addition amount and temperature in Acid Sulfate Soils under the submerged condition. The results obtained were summarized as follows: 1. pH and contents of available phosphate, soluble silicate, $NH_4-N$, and exchangeable iron in soils were decreased but exchangeable aluminium and manganese, and water soluble sulfur in soils increased after submergence. 2. Lime treatment increased pH, available phosphate, soluble silicate, $NH_4-N$, and water soluble sulfur, but that decreased exchangeable aluminium, iron, and manganese in soils. 3. Treatment with 12me/100gr of Ca as $CaCO_3$, showed the marked effect in increasing the exchangeable aluminium and iron, and increasing pH value to about 6.5 as well as available phosphate and $NH_4-N$. 4. Increases in available phosphate, $NH_4-N$, and exchangeable iron with aging of the soil flooded and lime treated were higher at $35^{\circ}C$ than those at $25^{\circ}C$. 5. Throughout submerged period a significant positive correlation was observed between pH and soluble silicate while the pH has negative correlation with exchangeable elements such as aluminium, iron, and manganese etc.

  • PDF

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.

Tidal Variations of the Chemical Constituent Contents in the Laver Bed Sea Waters in Wan Do Gun From October 1968 to February 1969 (완도읍 및 평일만 김밭에 있어서의 동계 오개월간 수질의 조수에 따른 변동)

  • Won, Chong Hun;Park Kil Sun
    • 한국해양학회지
    • /
    • v.5 no.1
    • /
    • pp.14-29
    • /
    • 1970
  • Tidal variations of various chemical constituents in the laver bed sea waters in Wan Do Gun were determined over one spring tidal cycle from Oct. 1968 to Feb. 1969. Total ranges and means of the contents at Pyung-il Do and Wan Do are as follows. Although the average monthly variations of each content at Pyung-il Do were similar to those at Wan Do, most of the contents at Pyung-il Do were at a slightly higher level than at Wan Do. The values of silicate-silicon, phosphate- phosphorus and soluble iron, however, showed high levels at Wan Do. Chlorinity, magnesium, calcium, dissolved oxygen, silicate-silicon and phosphate-phosphorus contents increased from Oct. 1968 to Feb. 1969, though the content of soluble iron decreased before December and slightly increased in January and February. The average monthly variations of ammonia-nitrogen and nitrate-nitrogen contents were irregular. The nitrite-nitrogen content appeared in trace amounts in the months with a comparatively high water temperature, i.e., October and November, but in midwinter it was undetected. The ranges of the tidal variations of the contents of each chemical constituent were not significantly wide, though the contents varied excessively by the hour, and this may show the irregularity of the water quality in Wan Do Gun coastal area. As a rule, no regular tidal variation of the chlorinity was observed except slightly decreased value at ebb tide at Wan Do. In general, although the pattern of the variations of calcium and magnesium contents were similar to that of the chlorinity, no definite relationships between these constituents and chlorinity were observed. Tidal variations of the dissolved oxygen content, nutrient salts and soluble iron were irregular.

  • PDF

Development of Immediate Face Lifting Technology for Reducing Wrinkles by Using Film-Forming Agent (피막 형성제를 이용한 즉각 리프팅 기술 개발)

  • Jun, Ji hyun;Ko, Eun ah;Han, Sang Gun;Kang, Hakhee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • Instant face lifting cosmetics contain various film forming agents for stretching the wrinkles on the skin surface. But, most of the film-forming polymers have sticky feels. And they are easily scrubbed out when skin is rubbed on. In this study, we focused on the influence of sodium silicate that has rapid film forming effect on skin surface and immediate wrinkle reducing effect. Sodium silicate, also known as water glass or soluble glass, is a compound containing sodium oxide and silica. Sodium silicate is a white powder that is readily soluble in water, producing an alkaline solution. Sodium silicate is stable in neutral and alkaline solutions. The sodium silicate solution hardens by drying in air and rapidly forms a thin film. When the solution is applied to the skin, the fine membrane coating is formed by water evaporation and ionic bond re-formation. It also makes the strong siloxane (Si-O) bonding on the skin surface. When these fixation properties are applied to cosmetics, they can give remarkable skin tightening effect. The sodium silicate solution can provide the lifting effect by forming a film on skin at a proper concentration. But, skin irritation may be caused with too high concentration of sodium silicate. We studied a desirable range of the sodium silicate concentration and combination with other fixatives for skin care formulation that has no sticky feels and no scrubbing out phenomenon. Immediate lifting gel was developed by using sodium silicate and various thickening systems. Among of the various thickeners, aluminum magnesium silicate showed the best compatibility with sodium silicate for rapid lifting effect. This instant physical lifting gel was confirmed as a low stimulating formula by skin clinical test.

A New Composition of Nanosized Silica-Silver for Control of Various Plant Diseases

  • Park Hae-Jun;Kim Sung-Ho;Kim Hwa-Jung;Choi Seong-Ho
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.295-302
    • /
    • 2006
  • The present study addressed the efficacy of nanosized silica-silver for controlling plant pathogenic microorganisms. The nanosized silica-silver consisted of nano-silver combined with silica molecules and water soluble polymer, prepared by exposing a solution including silver salt, silicate and water soluble polymer to radioactive rays. The nanosized silica-silver showed antifungal activity against the tested phytopathogenic fungi at 3.0 ppm with varied degrees. In contrast, a number of beneficial bacteria or plant pathogenic bacteria were not significantly affected at 10 ppm level but completely inhibited by 100 ppm of nanosized silicasilver. Among the tested plant pathogenic fungi, the new product effectively controlled powdery mildews of pumpkin at 0.3 ppm in both field and greenhouse tests. The pathogens disappeared from the infected leaves 3 days after spray and the plants remained healthy thereafter. Our results suggested that the product developed in this study was effective in controlling various plant fungal diseases.

A Test of Antifungal Spray Formulation Containing Nanosized Silica-Silver Particles Prepared by Using Gamma Irradiation for Practical Use to Control Indoor Fungi (감마선 조사에 의해 제조된 나노-실리카은 유무기복합 입자를 포함한 항진균성 스프레이 제제의 생활환경 저해균에 대한 실용성 검토)

  • Kim, Seong-Ho;Park, Hae-Jin;Kim, Hwa-Jung;Park, Hae-Jun
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.149-154
    • /
    • 2008
  • The present study described an antimicrobial spray composition comprising nanosized silica-silver particles, in which nano-silver is bound to silica molecules and a water-soluble polymer, the nanosized silica-silver particles prepared by irradiating a solution comprising a silver salt, silicate and the water-soluble polymer with radiation rays. According to a surfactant addition, the compositions were not turbid and were colorless. Also samples (cotton fabrics and wallpaper) were treated with the compositions also did not cause any stains even after drying under sunshine and at $80^{\circ}C$. Our results suggested that the spray formulation product was of practical use to control indoor fungi.

Particle-size Effect of Silicate Fertilizer on Its Solubility and Mobility in Soil (토양(土壤)에 처리한 광재규산질비료의 입도별(粒度別) 용해도(溶解度) 및 이동성(移動性))

  • Yoo, Sun-Ho;Park, Lee-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.2
    • /
    • pp.57-63
    • /
    • 1980
  • The effect of particle size of silicate fertilizer, crushed slag from the steel industry, on the behavior of silicate in soil was investigated through laboratory experiments. The silicate fertilizer was sieved to obtain three fractions of particles, coarser than 10 mesh 20-35 mesh, and finer than 100 mesh. Silicate concentration of the extract obtained by shaking 20 mg of particles, coarser than 10 mesh, 20-35 mesh, and finer than 100 mesh, in 50 ml of distilled water for 4 hours was 0.3, 1.0, and 3.2 ppm respectively. As shaking the mixture of the silicate fertilizer and soil proceeded, silicate concentration of the extract increased, and this increase after 4 hour shaking was attributed mainly to dissolution of soil silicate. When the mixture of soil and the silicate fertilizer was incubated under submerged condition, silicate concentration of the solution decreased for the first 2-4 weeks, thereafter increased with incubation time. During this incubation period, silicate concentration of the solution changed inversely with pH of the solution. After 6-10 weeks, however, both silicate concentration and pH of the solution increased with incubation time. Silicate concentration of the effluent from the 14.5 cm soil column of which top 4.5 cm was packed with the mixture of 30 g of soil and 30 mg of the silicate fertilizer reached maximum at 0.94 pore volumes for the particles of 20-35 mesh and 1.03 pore volumes for the particles finer than 100 mesh, whereas the effluent concentration reached maximum at 0.88 pore volumes for the soil column without the silicate fertilizer treatment. Soil analysis made after water percolation revealed that 1.5 pore volumes of water could leach down large amount of the water soluble silicate but not the sodium acetate extractable silicate, from top 3-6 cm soil layer.

  • PDF