• Title/Summary/Keyword: Water sensitive paper

Search Result 135, Processing Time 0.031 seconds

Depletion Sensitivity Evaluation of Rhodium and Vanadium Self-Powered Neutron Detector (SPND) using Monte Carlo Method (Monte Carlo 방법을 이용한 로듐 및 바나듐 자발 중성자계측기의 연소에 따른 민감도 평가)

  • CHA, Kyoon Ho;PARK, Young Woo
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.264-270
    • /
    • 2016
  • Self-powered neutron detector (SPND) is a sensor to monitor a neutron flux proportional to a reactor power of the nuclear power plants. Since an SPND is usually installed in the reactor core and does not require additional outside power, it generates electrons itself from interaction between neutrons and a neutron-sensitive material called an emitter, such as rhodium and vanadium. This paper presents the simulations of the depletion sensitivity evaluations based on MCNP models of rhodium and vanadium SPNDs and light water reactor fuel assembly. The evaluations include the detail geometries of the detectors and fuel assembly, and the modeling of rhodium and vanadium emitter depletion using MCNP and ORIGEN-S codes, and the realistic energy spectrum of beta rays using BETA-S code. The results of the simulations show that the lifetime of an SPND can be prolonged by using vanadium SPND than rhodium SPND. Also, the methods presented here can be used to analyze a life-time of those SPNDs using various emitter materials.

Intelligent Sprayer System using Tree Recognition (과수 인식을 이용한 지능형 방제기 시스템 개발)

  • Hong, Hyung Gil;Woo, Seong Yong;Song, Su Hwan;Oh, Jang Seok;Yun, Haeyong;Seo, Kab Ho;Kwon, Soon Wook;Lee, Ki Yong;Lee, Jang Chang;Cho, Hee Keun
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.115-123
    • /
    • 2020
  • Farmers using conventional sprayer system are exposed to pesticide poisoning and soil pollution due to pesticide application. In order to reduce this problem, the effective sprayer system is required. In this paper, we propose development of intelligent sprayer system using tree recognition. This intelligent sprayer system consists of an image recognition module, a remote control, a sprayer system, an air blower, and a control module. It is possible to spray pesticides automatically and manually through remote control using cameras and controls. We conducted a total of four experiments in tree recognition experiment, test of attachment and water sensitive papers, measurement of pesticide consumption, and measurement of worker exposure. The test results showed that the consumption of pesticides could be reduced while giving the same effect as conventional controls.

Compaction techniques and construction parameters of loess as filling material

  • Hu, Chang-Ming;Wang, Xue-Yan;Mei, Yuan;Yuan, Yi-Li;Zhang, Shan-Shan
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1143-1151
    • /
    • 2018
  • Loess often causes problems when used as a filling material in the construction of foundations. Therefore, the compaction technique, shear behavior, and bearing capacity of a filled foundation should be carefully considered. A series of tests was performed in this study to obtain effective compaction techniques and construction parameters. The results indicated that loess is strongly sensitive to water. Thus, the soil moisture content should be kept within 12%-14% when it is used as a filling material. The vibrating-dynamic combination compaction technique is effective and has fewer limitations than other methods. In addition, the shear strength of the compacted loess was found to increase linearly with the degree of compaction, and the soil's compressibility decreased rapidly with an increase in the degree of compaction when the degree of compaction was less than 95%. Finally, the characteristic value of the bearing capacity increased with an increase in the degree of compaction in a ladder-type way when the degree of compaction was within 92%-95%. Based on the test data, this paper could be used as a reference in the selection of construction designs in similar engineering projects.

Performance of a Horizontal-axis Turbine Based on the Direction of Current Flow (수평축 조류발전 로터의 유향변화에 따른 효율 고찰)

  • Jo, Chul-Hee;Park, Ro-Sik;Yim, Jin-Young;Lee, Kang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.8-12
    • /
    • 2010
  • The use of a tidal-current power system is one source of renewable energy that can minimize the environmental impact of power production and offer many other advantages compared to conventional energy sources. Unlike other energy production approaches, rate of energy production can be precisely predicted and the operational rate is very high. The performance of the rotor, which has a vital role in energy production using tidal currents, is determined by various design factors, and it should be optimized for the specific ocean environment in the field. The horizontal-axis turbine is very sensitive to the direction of flow, and flow direction changes due to rise and fall of the tides. To investigate the performance of the rotor considering the interaction problems with incidence angle of flow, a series of experiments were conducted, and a 3D CFD model was designed and analyzed by ANSYS CFX. The results and findings are summarized in the paper.

In vivo ESR measurement of free radical reaction in living mice

  • Han, Jin-Yi;Hideo Utsumi
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.6-7
    • /
    • 2000
  • Recently, free radicals such as active oxygen species, nitric oxide, etc are believed to be one of the key substances in physiological and pathological, toxicological phenomena, and oxidative damages, and all organism have defencing system against such as free radicals. Formation and extinction of free radicals may be regulated through bio-redox system, in which various enzymes and compounds should be involved in very complicated manner. Thus, direct and non-invasive measurement of in vivo free radical reactions with living animals must be essential to understand the role of free radicals in pathophysiological phenomena. Electron spin resonance spectroscopy (ESR) is very selective and sensitive technique to detect free radicals, but a conventional ESR spectrometer has large detect in application to living animals, since high frequent microwave is absorbed with water, resulting in generation of high fever in living body. In order to estimate in vivo free radical reactions in living whole animals, we develop in vivo ESR-CT technique using nitroxide radicals as spin probes. Nitroxide radicals and their reduced forms, hydroxylamines, are known to interact with various redox systems. We found that! ! the signal decay due to reduction of nitroxyl radicals is influenced by aging, inspired oxygen concentration, ischemia-referfusion injury, radiation, etc. In the present paper, I will introduce in vivo ESR technique and my laboratory recent results concerning non-invasive evaluation of free radical reactions in living mice.

  • PDF

Compressibility of Changi sand in K0 consolidation

  • Wanatowski, D.;Chu, J.;Gan, C.L.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.241-257
    • /
    • 2009
  • The one-dimensional compressibility of sand is an important property for the estimation of settlement or deformation of sand deposits. The $K_0$ value of sand is also an important design parameter. Experimental results are presented in this paper to study the compressibility of sand in $K_0$ consolidation tests. The $K_0$ consolidation tests were carried out using a triaxial cell and a plane-strain apparatus. Specimens prepared using both the moist tamping and the water sedimentation methods were tested. The testing data demonstrate that the type of testing apparatus does not affect the $K_0$ measurement if proper boundary conditions are imposed in the tests. The data also show that the compressibility and the $K_0$ value of loose sand specimens prepared using the moist tamping method are very sensitive to the variation of void ratio. The $K_0$ values measured from these tests do not agree with the $K_0$ values calculated from Jaky's equation. The compressibility and $K_0$ values of sand obtained from tests on specimens prepared using different preparation methods are different which may reflect the influence of soil fabrics or structures on the one dimensional compression behavior of sand.

Verification Test and Model Updating for a Nuclear Fuel Rod with Its Supporting Structure

  • H. S. Kang;K. N. Song;Kim, H. K.;K. H. Yoon;Y. H. Jung
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.73-82
    • /
    • 2001
  • Pressurized water reactor(PWR) fuel rods. which are continuously supported by a spring system called a spacer grid(SG), are exposed to reactor coolant at a flow velocity of up to 6-8 m/s. It is known that the vibration of 3 fuel rod is generated by the coolant flow, a so-called flow-induced-vibration(FIV), and the relative motion induced by the FIV between the fuel rod and the SG can wear away the surface of the fuel rod, which occasionally leads to its fretting failure. It is, therefore, important to understand the vibration characteristics of the fuel rod and reflect that in its design. In this paper, vibration analyses of the fuel rod with two different SGs were performed using both analytical and experimental methods. Updating of the finite element(FE) model using the measured data was performed in order to enhance confidence in the FE model of fuel rods supported by an SG. It was found that the modal parameters are very sensitive to the spring constant of the SG.

  • PDF

Effect of Various Shapes of Mixer Geometry on Two-Phase Flow Patterns in a Micro-Channel (마이크로 채널 내 혼합부 형상이 2상 유동 양식에 미치는 영향에 대한 연구)

  • Lee, Kwan Geun;Lee, Jun Kyoung;Park, Taehyun;Kim, Gyo Nam;Park, Eun Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The effect of inlet mixer geometries on the two-phase flow patterns in square micro-channel with $600{\times}600{\mu}m$ was investigated experimentally in this paper. The 4 different mixer configurations based on the Y, Impacting, and two T types (gas and liquid inlets were switched) were used. The test fluids were nitrogen and water. The liquid and gas superficial velocities were 0.01~10 m/s and 0.1~100 m/s, respectively. Several distinctive flow patterns, namely, annular, slug-annular, slug, slug-bubbly, bubbly, and churn flow could be seen. The flow pattern maps for each mixer were suggested, and it can be concluded that two-phase flow patterns are not very sensitive to the mixer geometries. But the mixing behaviors of gas and liquid for each mixer were different for slug and bubbly flow. Thus, the characteristics of slug and bubble for each case were not same.

Effect of Passivation Layer Properties on the Performance of Oxide TFTs

  • Jeong, Byoung-Seong;Park, Chang-Mo;Kim, Mu-Gyeom;Chung, Hyun-Joong;Ahn, Tae-Kyung;Heo, Seong-Kweon;Jeong, Jong-Han;Kim, Min-Kyu;Park, Hye-Hyang;Huh, Jong-Moo;Mo, Yeon-Gon;Kim, Hye-Dong;Kim, Sang-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1040-1043
    • /
    • 2009
  • a-IGZO is an attractive material to make an AMOLED device with uniform TFT properties for use in a large size display. However, this material shows TFT properties that are very sensitive to water or hydrogen. Therefore, it is essential to control these critical factors during fabrication of the backplane in order to improve the TFT performance. In this paper, we report the effect of passivation layer properties on the performance of the oxide TFTs.

  • PDF

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.