• Title/Summary/Keyword: Water scarcity

Search Result 94, Processing Time 0.021 seconds

Design of Lake Ecological Observation Data Management

  • Ahn, Bu-Young;Jung, Young-Jin;Lee, Myung-Sun;Jeong, Choong-Kyo;Kim, Bom-Chul
    • International Journal of Contents
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 2011
  • To protect water pollution and scarcity in lake and river, water quality monitoring applications have become important tools to understand the change of aquatic ecosystem. KLEON (Korean Lake Ecological Observatory Network) is designed to manage and share the ecological observations. The various kinds of water quality and phytoplankton observations are collected from the selected observatories such as seven lakes/rivers/wetlands. To deeply understand the collected observations with weather, KLEON also manages the observatory information such as lake, dam, floodgate, and weather. The accumulated observation and analyzed results are used to improve the water quality index of the observatories and encourage the ecologists' cooperation.

COD removal from industrial wastewater plants using reverse osmosis membrane

  • Madaeni, S.S.;Samieirad, S.
    • Membrane and Water Treatment
    • /
    • v.1 no.4
    • /
    • pp.273-282
    • /
    • 2010
  • Treatment and reuse of industrial wastewater is becoming a major goal due to water scarcity. This may be carried out using membrane separation technology in general and reverse osmosis (RO) in particular. In the current study, polyamide (FT-30) membrane was employed for treatment of wastewater obtained from Faraman industrial zone based in Kermanshah (Iran). The effects of operating conditions such as transmembrane pressure, cross flow velocity, temperature and time on water flux and rejection of impurities including COD by the membrane were elucidated. The aim was an improvement in membrane performance. The results indicate that most of the chemical substances are removed from the wastewater. In particular COD removal was increased from 64 to around 100% as temperature increased from 15 to $45^{\circ}C$. The complete COD removal was obtained at transmembrane pressure of 20 bars and cross flow velocity of 1.5 m/s. The treated wastewater may be reused for various applications including makeup water for cooling towers.

Quantifying Uncertainty for the Water Balance Analysis (물수지 분석을 위한 불확실성 정량화)

  • Lee, Seung-Uk;Kim, Young-Oh;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.281-292
    • /
    • 2005
  • The water balance analysis for the long-term water resources plan is a simple calculation that compares water demands with possible water supplies. For a watershed being considered the reports on the performance of the water balance analysis, however, have shown inconsistent results and thus have not earned credibility due to the uncertainty of the data acquired and models used. In this research, uncertainties in the water scarcity estimate were assessed through probability representation based on the Monte Carlo simulation using Latin Hypercube Sampling (LHS). The natural flow, municipal demand, industrial demand, agricultural demand, and return flow rate were selected as representative input variables for the water balance analysis, and their distributions were set based on the linear regression and the entropy theory. The statistical properties of the output variable samples were analyzed in comparison with a deterministic estimate of the water scarcity of an existing study. Application of LHS to three sub-basins of the Geum river basin showed the deterministic estimate could be overestimated or underestimated. The sensitivity analysis as well as the uncertainty analysis found that the return flow rate of the agricultural water is the most uncertain but is rarely sensitive to the output of the water balance analysis.

Estimating the economic value of agricultural water using the virtual water concept

  • Lee, Gyumin;Kim, Yoon Hyung
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.636-641
    • /
    • 2017
  • Water is an essential resource for human survival. According to the OECD Environmental Outlook to 2050, rapid industrialization and a global population increase by approximately two billion will likely increase global water use by 55% in 2050. However, water depletion has been getting worse than before and has been happening more quickly, as Earth's water resources are limited. The present study proposes water management measures by using the virtual water theory which enables water consumption measurement and the confirmation and recognition of water scarcity problems, and will support the development of counter-measures. As a method for estimating the value of agricultural water, virtual water theory was used to calculate the amount of agricultural water input for domestic rice and to apply prices of agricultural water in the United States and China to Korean water prices. When the Chinese price was applied to Korean water prices, the value of agricultural water represented 0.3% of the Korean rice producer's price. When the US price was applied to Korean water prices, the value of agricultural water represented 1.6% of the domestic rice producer's price. The study exposes the percentage of the value of agricultural water in agricultural product prices, as well as how this scare resource may affect future prices. In the future, if there are water charges to effectively manage agricultural water, this study, which uses the virtual water theory, can be used as a preliminary research.

Global Assessment of Current Water Resources using Total Runoff Integrating Pathways and Global GIS

  • Taikan Oki;Takao Saruhashi;Yasushi Agata;Shinjiro Kanae;Katumi Musiake
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.67-75
    • /
    • 2001
  • Anticipated water scarcity in the first half of this century is one of the most concerned international issues. However, even though the issue has an international impact and world wide monitoring is critical, there are limited number of global estimates at present. In this study, annual water availability was derived from annual runoff estimated by land surface models using Total Runoff Integrating Pathways (TRIP) with 0.5 degree by 0.5 degree longitude/latitude resolution globally. Global distribution of water withdrawal for each sector in the same horizontal spatial resolution was estimated based on country-base statistics of municipal water use, industrial water use, and agricultural intake, using global geographical information system with global distributions of population and irrigated crop land area. The total population under water stress estimated for 1995 corresponded very well with former estimates, however, the number is highly depend on how to assume the ratio how much water from outside of the region can be used for water resources within the region. It suggests the importance of regional studies evaluating the possibility of water intake as well as the validity of the investment for water resources withdrawal facilities.

  • PDF

Digital Twin based Household Water Consumption Forecasting using Agent Based Modeling

  • Sultan Alamri;Muhammad Saad Qaisar Alvi;Imran Usman;Adnan Idris
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • The continuous increase in urban population due to migration of mases from rural areas to big cities has set urban water supply under serious stress. Urban water resources face scarcity of available water quantity, which ultimately effects the water supply. It is high time to address this challenging problem by taking appropriate measures for the improvement of water utility services linked with better understanding of demand side management (DSM), which leads to an effective state of water supply governance. We propose a dynamic framework for preventive DSM that results in optimization of water resource management. This paper uses Agent Based Modeling (ABM) with Digital Twin (DT) to model water consumption behavior of a population and consequently forecast water demand. DT creates a digital clone of the system using physical model, sensors, and data analytics to integrate multi-physical quantities. By doing so, the proposed model replicates the physical settings to perform the remote monitoring and controlling jobs on the digital format, whilst offering support in decision making to the relevant authorities.

Impacts of Climate Change on Water Crisis and Formation of Green Algal Blooms in Vietnam

  • Thriveni, Thenepalli;Lee, Namju;Nam, Gnu;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 2017
  • Global warming affects water supply and water resources throughout the world. In many countries, climate change affects significantly on the fresh water resources. Vietnam is exposed mainly, to landslides and floods triggered by tropical storms and monsoon rains, although storm surge, whirlwind, river bank and coastal line erosion, hail rain. In addition to the prevalent drought, there are many major water challenges, including water availability, stress, scarcity and accessibility, because of poor resource management. Fast growth of urbanization, industrialization and population growth, agricultural activities and climate change cause heavy pressure on water quality. Both domestic and industrial wastewater, as well as storm water shares the same drainage. The common facilities for wastewater treatment are not available. Therefore, wastewater is treated only superficially and then discharged directly into rivers and lakes causing serious pollution of surface water environment. In this paper, we reported the severe water crisis and massive green algal blooms formation in Vietnam rivers and lakes. This is the biggest evidence of climate change variations in Vietnam.

Design and Implementation of Fully Automated Solar Powered Irrigation System

  • Mohammad Fawzi Al Ajlouni;Essam Ali Al-Nuaimy;Salman Abdul-Rassak Sultan;Ali Hammod AbdulHussein Twaij;Al Smadi Takialddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.197-205
    • /
    • 2024
  • This paper presents a fully automated stand-alone irrigation system with GSM (Global System for Mobile Communication) module. Solar energy is utilized to power the system and it is aimed to conserve water by reducing water losses. The system is based on a DC water pump that draws energy from solar panels along with automated water flow control using a moisture sensor. It is also fitted with alert and protection system that consists of an ultrasonic sensor and GSM messages sender that transmits signals showing the levels of the water in the reservoir and the battery charge. The control system is designed to stop the water pump from pumping water either when the battery level drops to equal or less than 10% of its full charge, or when the water level becomes less than 10 cm high in the reservoir. The experimental results revealed that the system is appropriate to use in remote areas with water scarcity and away from the national grid.

Establishment of Alarm Criteria for Automatic Water Quality Monitoring System in Korea

  • Lim, Byung-Jin;Hong, Eun-Young;Kim, Hyun-Ook;Jeong, Eun-Sook;Heo, Woo-Myung;Kim, Yoon-Hee
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • As of September 2008,45 Automatic Water Quality Monitoring Systems (AWQMS) have been installed at different sites on the 4 rivers to detect early the presence of pollutants in water and to issue an alarm. We count the number of issuing alarms by AWQMS, however, we will find the alarm has hardly been issued. The reasons for the scarcity of alarm issue are extensively being examined. The National Institute of Environmental Research attributes wrong alarm criteria for each AWQMS station to one the reasons. In this study, a suggestion has been made to modify the current alarm criteria to correspond with characteristics of river water quality. The current system with only two criteria (low and high) should be replaced as four-criteria systems (low, medium, high, and severe) based on cases of other advanced countries and stream conditions of Korea. The highest value of data collected for 5 years was suggested as the alarm criteria for each parameter. Meanwhile the alarm criteria for VOCs, phenol and heavy metals were established as same as drinking water quality criteria.

Patents Review on the Seawater Desalination Plant and Technology Using Reverse Osmosis Membrane Process (SWRO 해수담수화 플랜트 기술 관련 특허 동향 분석)

  • Cho, Jin Woo;Han, Ji Hee;Lee, Seock Heon;Sohn, Jin Sik;Yang, Jeong Seok;Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.343-350
    • /
    • 2008
  • Many reports have warned of insufficient water supply in most countries in future and prospected providing safe and clean water become more difficult by lack of access to sustainable drinking water resources. Several facts and figures explained the impact by natural climate change and human activity results in the water scarcity and deterioration. Among many scientific solutions, the seawater desalination using a reverse osmosis membrane, so called SWRO (Seawater Reverse Osmosis) process, has been recognized as one of the most promising alternatives because of its stability and efficiency in producing large amount of drinking water from seawater through desalination by membrane filtration. Recently, in Korea, numerous researches are conducted to develop more productive and cost effective SWRO process for its wide implementation. The objective of this paper is to review the patents concerning SWRO technologies involving the plant engineering, maintenance including pretreatment of seawater and fouling control, module design, and mechanical units development for energy saving. The patents in Korea, U.S., Japan, Europe, and PCT were intensively researched and analyzed to provide the state of the art as well as leading edge technology on SWRO. This information can hopefully suggest meaningful guidelines on future research and development.