• 제목/요약/키워드: Water regeneration center

검색결과 49건 처리시간 0.022초

방류수질 예측을 위한 AI 모델 적용 및 평가 (Application and evaluation for effluent water quality prediction using artificial intelligence model)

  • 김민철;박영호;유광태;김종락
    • 상하수도학회지
    • /
    • 제38권1호
    • /
    • pp.1-15
    • /
    • 2024
  • Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

Photocatalytic Systems of Pt Nanoparticles and Molecular Co Complexes for NADH Regeneration and Enzyme-coupled CO2 Conversion

  • Kim, Ellen;Jeon, Minkyung;Kim, Soojin;Yadav, Paras Nath;Jeong, Kwang-Duk;Kim, Jinheung
    • Rapid Communication in Photoscience
    • /
    • 제2권2호
    • /
    • pp.42-45
    • /
    • 2013
  • Natural photosynthesis utilizes solar energy to convert carbon dioxide and water to energy-rich carbohydrates. Substantial use of sunlight to meet world energy demands requires energy storage in useful fuels via chemical bonds because sunlight is intermittent. Artificial photosynthesis research focuses the fundamental natural process to design solar energy conversion systems. Nicotinamide adenine dinucleotide ($NAD^+$) and $NADP^+$ are ubiquitous as electron transporters in biological systems. Enzymatic, chemical, and electrochemical methods have been reported for NADH regeneration. As photochemical systems, visible light-driven catalytic activity of NADH regeneration was carried out using platinum nanoparticles, molecular rhodium and cobalt complexes in the presence of triethanolamine as a sacrificial electron donor. Pt nanoparticles showed photochemical NADH regeneration activity without additional visible light collector molecules, demonstrating that both photoactivating and catalytic activities exist together in Pt nanoparticles. The NADH regeneration of the Pt nanoparticle system was not interfered with the reduction of $O_2$. Molecular cobalt complexes containing dimethylglyoxime ligands also transfer their hydrides to $NAD^+$ with photoactivation of eosin Y in the presence of TEOA. In this photocatalytic reaction, the $NAD^+$ reduction process competed with a proton reduction.

Ecological Modeling for Estimation of Environmental Characteristics in Masan Bay

  • Kim, Dong-Myung
    • 한국환경과학회지
    • /
    • 제12권8호
    • /
    • pp.841-846
    • /
    • 2003
  • The ecosystem model was applied to estimate the regional distribution of the net production(or consumption) of phytoplankton and the net uptake(or regeneration) rate of nutrients in Masan Bay for scenario analysis to find a proper management plan. At the surface level, net production of phytoplankton is 200 mgC/㎡/day at the entrance of the bay, and 400∼1000 mgC/㎡/day at the center of the bay. The inner area of the bay showed more than 2000 mgC/㎡/day. All areas of the bottom level have a net consumption, with the center of the bottom level showing more than 600 mgC/㎡/day. For dissolved inorganic nitrogen, the results showed a net uptake rate of 100∼900 mg/㎡/day at the surface level. It showed that the net regeneration is above 50 mg/㎡/day at the bottom level. For dissolved inorganic phosphorus, the net uptake rate showed 10.0∼80.0 mg/㎡/day at the surface level, and the regeneration rate showed 0∼20.5 mg/㎡/day at the bottom level. Therefore, in order to control the water quality in Masan Bay, it is important to consider the re-supplement of nutrients regenerated in the water column.

A Study on the Odor Removal Control System of Sewage Sludge

  • KIM, Su-Hye;LEE, So-Hee;YUN, Yeo-Jin;CHOI, Soo-Young;JUNG, Min-Jae;KWON, Woo-Taeg
    • 웰빙융합연구
    • /
    • 제4권2호
    • /
    • pp.19-25
    • /
    • 2021
  • Purpose: The purpose of this study is to reduce odor complaints by identifying problems with odor management at the site of the water regeneration center and researching odor management methods. Due to the high population density of Korea, sewage treatment facilities are adjacent to residential and industrial areas. According to previous studies, the main malodor-emitting facilities of sewage treatment facilities were preliminary treatment facilities (2,220 times), sedimentation basins (4,628 times), and sludge treatment facilities (9,616 times). Research design, data and methodology: Compound malodors and designated malodor-producing substances were collected from five site boundaries of the water regeneration center and analyzed according to the official methods to test malodor, and a total of two times (August and September 2020) were conducted. Results: As a result of the measurement, in the green area in front of the center office, compound malodors were detected at a maximum of 8 times and at least 3 times during the dawn time. As for the designated malodor-producing substances, 0.1ppm of ammonia was detected in the green area in front of the center office and the park golf course. This is within 15 times the maximum allowable emission level of compound malodors and within 1ppm of the maximum allowable emission level of ammonia. Conclusions: Even if the dilution rate of the compound malodors did not exceed the maximum allowable emission level, the odor could be recognized, and more research is needed in the future to establish effective reduction measures according to the subjective and individual and seasonal odor characteristics.

비수용성 위생용품 사용에 따른 물재생센터 개선방안: 서울시를 중심으로 (Study on the Improvement of Water Regeneration Center by Using Non-water-soluble Sanitary Products: Focusing on the case of Seoul City)

  • 김충곤;배윤환;신현곤
    • 유기물자원화
    • /
    • 제31권2호
    • /
    • pp.39-44
    • /
    • 2023
  • 본 연구는 비수용성 위생용품의 수요와 공급이 증가하고 있는 상황에서 분뇨 및 하수처리시설의 물재생센터 처리과정중 비수용성 위생용품 관련 문제점을 분석하여 그 개선방안을 마련하고자 수행하였다. 그 결과, 물재생센터의 개선방안은 전처리설비에 주안점을 두어야 할 것이며 향후 설비교체시 하수처리시설의 경우에는 현실에 맞는 각종 제진기 설치를 제안하며, 분뇨처리시설은 조목스크린과 협잡물종합처리기 연계 또는 협잡물종합처리기 단독설치하는 방안을 제안한다. 또한 분뇨처리시설은 우선적으로 협잡물종합처리기 전단에 미세스크린을 설치하여 비수용성 물질을 분리하여야 하며 협잡물처리기의 유지관리 공간 확보가 필요하다.

고도 정수처리장에서의 과불화합물 거동 (Behavior of perfluorinated compounds in advanced water treatment plant)

  • 임채승;김형준;한개희;김호;황윤빈;김극태
    • 상하수도학회지
    • /
    • 제34권5호
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

방사선 세포 손상에 대한 인삼 Alkaloid 분획의 보호 효과에 관한 실험적 연구 (An Experimental Study of Radioprotective Effect of Ginseng Alkaloid Fraction on Cellular Damage)

  • 류성렬;조철구;김미숙;유형준;김성호;김태환
    • Journal of Radiation Protection and Research
    • /
    • 제22권3호
    • /
    • pp.195-205
    • /
    • 1997
  • 본 연구에서는 인삼의 알카로이드 분획 (alkaloid fraction)을 주요성분으로 함유하는 Adaptagen의 방사선 방어제로서의 효과를 구명(究明)하기 위하여, 방사선조사에 의한 마우스 공장 소낭선 세포 손상 및 회복을 측정하고, 마우스 비장임파구 미세핵 측정법을 시험관 내 및 생체에서 실시함으로써 본 제재의 방사선 방어효과를 평가하였으며, 실험결과 얻어진 결론은 다음과 같다. 1. 마우스 공장소낭선세포의 방사선 손상은 대조군에 비해 alkaloid 분획 투여시와 수용성 분획 투여시 공히 감소하였으나, alkaloid 분획 투여시 더욱 현저하였다. 2. 마우스 공장소낭선세포 손상의 회복 및 증식은 대조군에 비해 alkaloid 분획 투여시와 수용성 분획 투여시 공히 현저히 증가하였다. 3. 시험관내 시험에서 방사선에 의한 임파구 미세핵 형성도는 쌍핵세포의 형성율이 낮아 통계학적 의의는 없으나 약제 투여 군에서 빈도가 낮은 경향을 보였으며 alkaloid 분획 투여시 더욱 현저하였다. 4. 생체내 시험에서 방사선에 의한 임파구 미세핵 형성빈도는 대조군에 비해 alkaloid 분획 주여시와 수용성 분획 투여시 공히 감소하였으나 alkaloid 분획 투여시 더욱 현저하였다. 이상의 결과에서 인삼의 alkaloid 및 수용성 분획이 방사선에 의한 염색체 손상을 억제하고 손상된 세포의 회복 (repair) 및 증식 (regeneration)을 촉진하여 방사선 방어효과를 나타냄을 알 수 있었으며, 이는 독성이 비교적 없는 자연산생물 (natural products)로서 방사선방어제로 임상에 직접 사용 할 수 있다.

  • PDF

고압고온 재생조건에서의 암모니아수-CO2 반응특성 (Characteristics of Aqueous Ammonia-CO2 reaction at Regeneration Condition of High Temperature and Pressure)

  • 김윤희;이광복;박성열;고창현;박종호;범희태;한명완;김종남
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.253-258
    • /
    • 2010
  • 암모니아수를 이용한 이산화탄소 흡수분리공정에서 흡수액의 재생조건(온도, 압력)이 이산화탄소 흡수성능에 미치는 영향을 조사하였다. 실험에 사용된 흡수액은 탄산암모늄($(NH_4)_2CO_3$)을 물에 용해시키어 $CO_2$ 로딩($mol\;CO_2/mol\;NH_3$)이 0.5, 용액 내의 암모니아수 농도가 14, 20, 26 및 32 wt%로 되도록 제조하였고, 이산화탄소의 흡수에 앞서 재생압력(6~18 bar)을 조절하면서 $120{\sim}160^{\circ}C$의 온도범위로 제조된 흡수액을 가열하여 재생하였다. 재생된 흡수액을 기포 반응기에 넣고 12 vol%의 $CO_2$를 함유한 기체를 주입하여 흡수반응을 수행하였다. 실험결과 26 wt%의 암모니아수가 대체적으로 $CO_2$ 흡수량이 높았으며, 특히 재생온도가 $150^{\circ}C$, 재생압력이 14 bar일 때의 $CO_2$ 흡수량은 본 연구의 실험조건에서 $45ml\;CO_2/g$ solution으로 가장 높은 값을 보였다. 적정을 통해 재생된 용액을 분석한 결과 재생압력이 높아질수록 암모니아 손실량은 감소하고, 재생온도가 높아질수록 암모니아 손실량이 증가하였다. 또한 암모니아 농도증가에 따라 암모니아 손실량이 비례적으로 증가하였다. Electrolyte NRTL 모델을 사용하여 Aspen Plus에 적용한 결과 실험 데이터와 거의 일치함을 보였다.

오사카 난바 역세권 재생사례연구를 통한 우리나라 지방대도시 구도심 재생전략 연구 (Urban Regeneration Strategies of Old City Centers in Local Metropolitan cities through Case Study about Nanba Station Regeneration in Osaka City)

  • 권성실;오덕성
    • KIEAE Journal
    • /
    • 제10권5호
    • /
    • pp.13-22
    • /
    • 2010
  • The old city centers of local metropolitans have lost their functions as CBD in korea. Those old city centers have an only role as a gate connected to the new CBD. This study aims to present regeneration stratigies of old city centers through Osaka case study. This research has been focused on the physical and environmental factors in urban regeneration. There are 4 strategies for old city centers. First, the strategy to attract people to the old city centers is high-density and mixed-use development having functions like shopping, entertainment, residence. This kind of development makes local metropolitan cities compact cities to protect urban sprawl. Second, strategy to give old city centers an identity is to conserve traditional culture and structures and to revitalize retail market. Third is to make pedestrian-friendly street system. Osaka ism't pedestrian friendly but remodelling the connect the pedestrian path to the culture facilities. Fourth is to have water and green environment. Green space is the strong factor that pull people to old city centers.

High frequency plant regeneration from zygotic-embryo-derived embryogenic cell suspension cultures of watershield (Brasenia schreberi)

  • Oh, Myung Jin;Na, Hye Ryun;Choi, Hong-Keun;Liu, Jang Ryol;Kim, Suk Weon
    • Plant Biotechnology Reports
    • /
    • 제2권1호
    • /
    • pp.87-92
    • /
    • 2008
  • An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on halfstrength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to $3mg\;l^{-1}$, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryoderived white friable callus were established using half-strength MS medium supplemented with $0.3mg\;l^{-1}$ 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of water-shield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.