• Title/Summary/Keyword: Water reaction

Search Result 4,100, Processing Time 0.028 seconds

Decomposition of Trchloroethylene/Air Mixture by Electron Beam Irradiation in a Flow Reactor (전자빔을 이용한 흐름반응기에서의 Trichloroethylene/Air 분해)

  • ;;;Tatiana Stuchinskaya
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2001
  • Decomposition of trichloroethlyene(TCE) in electron beam irradiation was examined on order to obtain information on the treatment of VOC in air. Air containing vaporized TCE has been studied in a flow reactor with different reaction environments, at various initial TCE concentration and in the presence and absence of water vapor. Maximum decomposition was observed in oxygen reaction environment and the degree of decomposition was about 99% at 20kGy for 2,000ppm initial TCE. The concentration of TCE exponentially decreased with dose in air and pure oxygen. The effect of water vapor on TCE decomposition efficiency was examined. The decomposition rate of TCE in the presence of water vapor (5,600 ppm) was approximately 10% higher than that in the absence of water vapor. Dichloroacetic acid, dichloroacethyl chloride and dichloroethyl ester acid were identified as primary products of this reaction adn were decomposed and oxidized to yield CO and $CO_2$. Perchloroethylene, hexachloroethane, chloroform and carbon tetrachloride were also observed as highly chlorinat-ed by products.

  • PDF

Noble metal catalysts for water gas shift reaction and their effectiveness factor (귀금속 계열 촉매의 수성가스전환반응특성과 유효인자)

  • Lim, Sung-Kwang;Bae, Joong-Myeon;Kim, Ki-Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.514-517
    • /
    • 2008
  • Water gas shift(WGS) is an important step in fuel process for fuel cells, and improperness of commercial WGS catalysts for use in fuel cell systems has prompted numerous researches on noble metal catalysts. A selected noble metal catalyst for water gas shift reaction(WGS) was prepared with various metal loadings. The prepared catalysts were tested under two feeding conditions. At moderate residence time, carbon monoxide conversion was much higher on the noble metal catalysts as compared to commercial high-temperature shift catalyst. Effects of metal loading were examined by activity tests at short residence time. Higher metal loading effected higher reaction rate. The kinetic data was fitted to simple reaction equations and effectiveness factor was estimated. The results suggest the necessity of a structural design for the highly active noble metal catalysts.

  • PDF

A Study on the Characteristics of Parameters in Groundwater Table Fluctuation Model (지하수위 변동 해석모델의 매개변수 특성 연구)

  • Kim, Nam-Won;Kim, Youn-Jung;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.615-623
    • /
    • 2014
  • The groundwater level varies according to the characteristics and composite materials of aquifer. In this study, specific yield and reaction factor which are the major two hydrogeological parameters in the WTF(Water Table Fluctuation) method were estimated and analyzed spatial characteristics. 8 groundwater level stations which have enough measuring period and high correlation with rainfall in the Hancheon watershed were used. The results showed that specific yield was randomly distributed and reaction factor showed inverse trend with altitude. If the enough data were collected, reaction factor according to altitude in ungauged points could be estimated by using these parameter characteristics.

Preconcentration and Detection of Herbicides in Water by Using the On-line SPE-HPLC System and Photochemical Reaction

  • 이승호;이성광;박영훈;김현주;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1165-1171
    • /
    • 1999
  • The analysis of trace herbicides using the on-line SPE-HPLC system and a photochemical reaction was studied. 18 compounds of herbicides including eight triazines, six phenoxy acids and esters, and four other herbicides were examined. The on-line SPE-HPLC system developed for selection of eluting solvent improved chromatographic efficiency. The recoveries of herbicides were higher than 77%. With 100 mL tap water samples, the detection limits for all analytes were in the 0.1-2.3×10-10 M range. Detection was done by a UV or fluorescence spectrometer after photochemical reaction at the end of the column with 2W or 450W mercury lamp. Without a photochemical reaction, all compounds responded to 230 nm UV detector, but phenoxy acids and esters were weakly detected. However, with a photochemical reaction, these compounds were selectively detected at 320 nm wavelength of UV absorption and 400 nm emission of the fluorescence detectors. This method can be used for the analysis of environmental water containing herbicides at trace levels.

A Characterization of Pervaporation-facilitated Esterification Reaction with non-perfect Separation (비완전 막분리시 투과증발 막촉진 에스터화 반응 거동 연구)

  • C. K Yeom;F. U. Baig
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.268-282
    • /
    • 2003
  • Pervaporation-facilitated esterification with slow reaction regime was characterized by using a practical model based on non-perfect separation through membrane. A non-perfect separation in which the membrane is not perfectly permselective to water was applied to the model. Thus, membrane selectivity and membrane capability to remove water were included in the simulation model to explain how they influence the membrane-facilitated reaction process and improve the reactor performance. It was shown by simulation that in the reaction systems with non-perfect separation, reaction completion can hardly be achievable when any reactant at initial molar ratio=1 or the less abundant reactant at initial molar ratio>1 permeates through membrane, and the permeation of ester accelerates the forward reaction md increase reaction conversion at any instant through removal of product species like water. The volume change causes concentrating both reactants and products that affect the reaction with time in opposite ways; reactant-concentrating effect is dominant during the initial stage of reaction, increasing the reaction rate, and then concentrating product influences more reaction by decreasing the reaction rate.

Assessment of Micro Organic Pollutants Removal Using Advanced Water Treatment Process and Nanofiltration Process (고도처리공정과 나노여과공정에서의 미량유해물질 제거 평가)

  • Kang, Joon-Seok;Choi, Yang-Hun;Kwon, Soon-Buhm;Yu, Young-Beom
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.579-587
    • /
    • 2014
  • Various kinds of micro organic pollutants have frequently been detected from a water system. Therefore, it is considered to be very important part in the drinking water treatment system. And the research about removal process and processing efficiency have been being conducted briskly. In this study, the removal efficiency was evaluated using advanced water treatment process and nanofiltration process. The removal efficiency of nanofiltration process was very different according to physical and chemical characteristics of materials. The molecular weight of cutoff was the most influential factor in the removal efficiency. And when pKa value was higher than pH of raw water or Log Kow value was below 2, the removal efficiency of material was decreased. In case of oxidation reaction, the bigger the molecular weight of material was and the more hydrophobic a material was, the less oxidation reaction occurred. And the removal efficiency was decreased. Most unoxidized materials were removed by absorption. And the more actively oxidation reaction occurred by $H_2O_2$, the more absorption reaction increased.

Developing efficient transition metal-based water splitting catalyst using rechargeable battery materials (배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발)

  • Kim, Hyunah;Kang, Kisuk
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.416-426
    • /
    • 2018
  • Water splitting is regarded as one of the most environmentally benign routes for hydrogen production. Nevertheless, the low energy efficiency to produce the hydrogen has been a critical bottleneck, which is attributable to the multi-electron and multi-step reactions during water splitting reaction. In this respect, the development of efficient, durable, and inexpensive catalysts that can promote the reaction is indispensable. Extensive searching for new catalysts has been carried out for past decades, identifying several promising catalysts. Recently, researchers have found that conventional battery materials; particularly high-voltage intercalation-based cathode materials, could exhibit remarkable performance in catalyzing the water splitting process. One of the unique capabilities in this class of materials is that the valency state of metals and the atomic arrangement of the structure can be easily tailored, based on simple intercalation chemistry. Moreover, taking advantage of the rich prior knowledge on the intercalation compounds can offer the unexplored path to identify new water splitting catalysts.

Water Gas Shift Reaction Using the Commercial Catalyst Pellets from the Gases by Waste Plastic Gasification (폐플라스틱 가스화에 의한 가스로부터 상용 촉매 펠릿을 이용한 수성가스 전환 반응)

  • JI-MIN YUN;YOUNG-SUB CHOI;JIN-BAE KIM;JIN-BAE KIM;GAB-JIN HWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.4
    • /
    • pp.327-333
    • /
    • 2023
  • The water gas shift reaction was carried out using the commercial catalyst pellet and the simulated gases expected to occur from waste plastic gasification. In the water gas shift reaction, the high temperature shift reaction and the low temperature shift reaction were continuously performed with CO:H2O ratio of 1:2, 1:2.5, and 1:3, and the CO conversion and H2 increase rate were evaluated. The H2 increase rate increased in order to CO:H2O ratio of 1:3 > CO:H2O ratio of 1:2.5 > CO:H2O ratio of 1:2. The CO conversion showed a high value of more than 97% at each CO:H2O ratio. The water gas shift reaction at a CO:H2O ratio of 1:3 showed the highest H2 increase rate and CO conversion.

The Fundamental Study on the decision of the weight of water required to cement hydration (시멘트 페이스트의 수화수량 정량화에 관한 기초적 연구(구조 및 재료 \circled2))

  • 이준구;박광수;김석열;장문기;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.266-271
    • /
    • 2000
  • This study was performed to find out how much water the cement hydration reaction need. It is real situation that it is difficult to find out the amount of chemical combined water with stoichiometric chemical reaction form. Because several variation occurred during hydration reaction it's not easy to divide water which used at cement paste mixture. In this study high temperature(105$^{\circ}C$) dry method was used to divide evaporable water and non-evaporable water. The last is combined water chemically and some free water absorbed to products of hydration physically. The test was processed with variation of water cement ratio from 10% to 45% with 5% intervals. The weight of cement paste specimens were measured after dry for 72hours at each checking time(0.5, 1, 3, 5, 10, 24, 48, 72, 168hour). In this study some conclusions such as follows were derived. Firstly, Pure combined water contents required at cement hydration result in 23.3percent of the weight of cement. Secondly, The sufficient mixing water needed to fully hydrated cement result in about 40∼45percent of weight of cement. That is, gel pores water could be about 16.7∼21.7percent of weight of cement.

  • PDF

Preparation of a Water-Selective Ceramic Membrane on a Porous Stainless Steel Support by Sol-Gel Process and Its Application to Dehydration Membrane Reactor

  • Lee, Kew-Ho;Sea, Bongkuk;Youn, Min-Young;Lee, Yoon-Gyu;Lee, Dong-Wook
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • We developed a water-selective ceramic composite membrane for use as a dehydration membrane reactor for dimethylether (DME) synthesis from methanol. The membranes were modified on the porous stainless steel support by the sol-gel method accompanied by a suction process. The improved membrane modification process was effective in increasing the vapour permselectivity by removal of defects and pinholes. The optimized alumina/silica composite membrane exhibited a water permeance of 1.14${\times}$10$^{-7}$ mol/$m^2$.sec.Pa and a water/methanol selectivity of 8.4 at permeation temperature of 25$0^{\circ}C$. The catalytic reaction for DME synthesis from methanol using the membrane was performed at 23$0^{\circ}C$, and the reaction conversion was compared with that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor was much higher than that of the conventional fixed-bed reactor. The reaction conversion of the membrane reactor and the conventional fixed-bed reactor was 82.5 and 68.0%, respectively. This improvement of reaction efficiency can last if the water vapour produced in the reaction zone is removed continuously.