• Title/Summary/Keyword: Water quality monitoring

Search Result 1,044, Processing Time 0.033 seconds

Real-time Water Monitoring System for Small Water Supply Facility using High Reliable Wireless Sensor Network (고신뢰 무선센서네트워크를 이용한 실시간 수질 모니터링 시스템)

  • Kang, Hoyong;Jang, Youn-Seon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.331-341
    • /
    • 2015
  • In this paper, real-time water quality monitoring system of small water supply facilities based on IEEE 802.15.4e-2012 DSME MAC and IEEE 802.15.4g-2012 PHY standard is presented, which is capable to acquire for highly reliable water quality information in the wide outdoor areas for effective water quality management of small water quality facilities is distributed in the long distance and remote areas. Previously, Long distance transmission is difficult in most water quality sensor module is using RS-485 protocol. But with this system, even in harsh outdoor environment, it is possible to establish a radio wave sensor in a wide area network, and not only water quality sensor shall be connected to the wireless system, but also wireless integrated management system shall provide more effective way of management of the numerous small water supply facilities spread throughout the community, so that the administrator can remotely monitor the data of water turbidity, pH, residual chlorine in the water-supply, water-level, and generate alarm to cope with risks. The management of small water facilities is done by residents will be very effective to notice water quality information of small water facilities to residents.

Development of a Real-Time Water Quality Monitoring System using Coastal Passenger Ships and PCS Telemetry

  • Jin, Jae-Youll;Park, Jin-Soon;Lee, Jong-Kuk;Park, Kwang-Soon;Lee, Dong-Young;Yum, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 1999
  • To meet increasing needs for environmentally sustainable management of coastal area, there has been compelling pressure to establish a cost-effective and long-term coastal water quality (CWQ) monitoring system. A remote CWQ monitoring system, STAMP, has been developed and is in operation along the route between Kyema harbor and Anma Island in the southwestern coastal area of Korea. STAMP uses a PCS phone as a telemetry unit to transmit acquired data for monitoring general water quality parameters, and a routinely operating coastal passenger ship or car ferry. STAMP has various merits of low-cost operations; long-term monitoring with secure instrumentation; and stable real-time telemetry of acquired data with-out the loss and noise. It is expected that the system will serve as a very useful tool in the CWQ managing programs of Korea taking the advantage of many coastal passenger ships in various routes including the ships departing from the coastal industrial cities. The acquired data compiled on suspended surface sediment concentrations (SSSC) will be also valuably helpful in understanding the sediment budget across the routes of the vessel.

  • PDF

Applications of Drones for Environmental Monitoring of Pollutant-Emitting Facilities

  • Son, Seung Woo;Yu, Jae Jin;Kim, Dong Woo;Park, Hyun Su;Yoon, Jeong Ho
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.4
    • /
    • pp.298-304
    • /
    • 2021
  • This study aimed to determine the applicability of drones and air quality sensors in environmental monitoring of air pollutant emissions by developing and testing two new methods. The first method used orthoimagery for precise monitoring of pollutant-emitting facilities. The second method used atmospheric sensors for monitoring air pollutants in emissions. Results showed that ground sample distance could be established within 5 cm during the creation of orthoimagery for monitoring emissions, which allowed for detailed examination of facilities with naked eyes. For air quality monitoring, drones were flown on a fixed course and measured the air quality in point units, thus enabling mapping of air quality through spatial analysis. Sensors that could measure various substances were used during this process. Data on particulate matter were compared with data from the National Air Pollution Measurement Network to determine its future potential to leverage. However, technical development and applications for environmental monitoring of pollution-emitting facilities are still in their early stages. They could be limited by meteorological conditions and sensitivity of the sensor technology. This research is expected to provide guidelines for environmental monitoring of pollutant-emitting facilities using drones.

Monitoring of Agro-Ecological Environments at Small Watershed (농업유역의 생태환경 모니터링 기법 연구)

  • 박승우;윤광식
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.2
    • /
    • pp.91-102
    • /
    • 1996
  • Monitoring techniques for afro-ecological environments were studied, Hydrologic and ecological components in conjunction with water quality were monitored in the Balkan watershed. The hydrologic monitoring program consists of four water level gauging stations along creeks and stream at the watershed having 26.5 km2. Stage - storage relationship of reservoir, rainfall amount of the watershed, and rating curve of the stream gauging stations were established. Soil type, land use, hydrologic soil group, population and economic activities within the watershed were surveyed. Water quality data from the streams were sampled weekly and chemical analysis was conducted. Temporal variations of water quality were investigated and water quality map of each reach of stream was made to identify spatial variations. Seasonal and spatial variations of vegetation densities along stream in the watershed were investigated using grid, Density variations of insect species such as arthropod, flying insect, spider spices, rice insects were also monitored to determine seansonal surveying density. These monitored data will be used to develop monitoring techi%ues and afro - ecological environment models.

  • PDF

Causes of Fish Kill in the Urban Stream and Prevention Methods II - Application of Automatic Water Quality Monitoring Systen and Water Quality Modeling (도시 하천에서의 어류 폐사 원인 분석 II - 자동수질측정장치 및 수질모델의 사용)

  • Lee, Eun-hyoung;Seo, Dongil;Hwang, Hyun-dong;Yun, Jin-hyuk;Choi, Jae-hun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.585-594
    • /
    • 2006
  • This study focused on the causes of fish kills and its prevention methods in Yudeung Stream, Daejeon, Korea. Intense field data, continuous water quality monitoring system and water quality modeling were applied to analyze the causes. Pollutant can be delivered to urban streams by surface runoff and combined sewer overflows in rainfall events. However, water quality analysis and water quality modeling results indicate that the abrupt fish kills in the Yudeung stream seems to be caused by combined effect of DO depletion, increase in turbidity and other toxic material. Excessive fish population in the study area may harm the aesthetic value of the stream and also has greater potential for massive fish kills. It is suggested to implement methods to reduce delivery of pollutants to the stream not only to prevent fish kills but also to keep balance of ecosystem including human uses. Frequent clean up of the urban surface and CSO, installation of detention basin will be helpful. In the long run, it seems combined sewer system has be replaced with separate sewer system for more effective pollutant removal in the urban area.

Assessment of Groundwater Quality on a Watershed Scale by Using Groundwater Quality Monitoring Data (지하수수질측정망 자료를 이용한 유역단위 지하수 수질등급 평가)

  • Kim, Jeong Jik;Hyun, Yunjung
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.186-195
    • /
    • 2021
  • In Korea, groundwater quality is monitored through National Groundwater Quality Monitoring Network (NGQMN) administered by Ministry of Environment. For a given contaminant, compliance to groundwater quality standards is assessed on a annual basis by monitoring the number of incidents that concentration exceeds the regulatory limit. However, this approach provides only a fractional information about groundwater quality degradation, and more crucial information such as location and severity of the contamination cannot be obtained. For better groundwater quality management on a watershed, a more spatially informative and intuitive method is required. This study presents two statistical methods to convert point-wise monitoring data into information on groundwater quality status of a watershed by using a proposed grading scale. The proposed grading system is based on readily available reference standards that classify the water quality into 4 grades. The methods were evaluated with NO3-, Cl-, and total coliform data in Geum River basin. The analyses revealed that groundwater in most watersheds of Geum River basin is good for domestic or/and drinking with no treatment. But, there was notable quality degradation in Bunam seawall and So-oak downstream standard watersheds contaminated by NO3- and Cl-, respectively.

Establishment of Alarm Criteria for Automatic Water Quality Monitoring System in Korea

  • Lim, Byung-Jin;Hong, Eun-Young;Kim, Hyun-Ook;Jeong, Eun-Sook;Heo, Woo-Myung;Kim, Yoon-Hee
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.423-430
    • /
    • 2008
  • As of September 2008,45 Automatic Water Quality Monitoring Systems (AWQMS) have been installed at different sites on the 4 rivers to detect early the presence of pollutants in water and to issue an alarm. We count the number of issuing alarms by AWQMS, however, we will find the alarm has hardly been issued. The reasons for the scarcity of alarm issue are extensively being examined. The National Institute of Environmental Research attributes wrong alarm criteria for each AWQMS station to one the reasons. In this study, a suggestion has been made to modify the current alarm criteria to correspond with characteristics of river water quality. The current system with only two criteria (low and high) should be replaced as four-criteria systems (low, medium, high, and severe) based on cases of other advanced countries and stream conditions of Korea. The highest value of data collected for 5 years was suggested as the alarm criteria for each parameter. Meanwhile the alarm criteria for VOCs, phenol and heavy metals were established as same as drinking water quality criteria.

Effects of Indirect Wastewater Reuse on Water Quality and Soil Environment in Paddy Fields (간접하수재이용에 따른 논에서의 수질 및 토양환경 영향 분석)

  • Jeong, Han Seok;Park, Ji Hoon;Seong, Choung Hyun;Jang, Tae Il;Kang, Moon Seong;Park, Seung Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.91-104
    • /
    • 2013
  • The objectives of this study were to monitor and assess the environmental impacts of indirect wastewater reuse on water quality and soil in paddy fields. Yongin monitoring site (YI) irrigated from agricultural reservoir and Osan monitoring site (OS) irrigated with treated wastewater diluted with stream water were selected as control and treatment, respectively. Monitoring results for irrigation water quality showed a significant statistical difference in salinity, exchangeable cation and nutrients. Pond water quality showed a similar tendency with irrigation water except for the decreased difference in nutrients due to the fertilization impact. Soil chemical properties mainly influenced by fertilization activity such as T-N, T-P, and $P_2O_5$ were changed similarly in soil profiles of both monitoring sites, while the properties, EC, Ca, Mg, and Na, mainly effected by irrigation water quality showed a considerable change with time and soil depth in treatment plots. Heavy metal contents in paddy soil of both control and treatment did not exceed the soil contamination warning standards. This study could contribute to suggest the irrigation water quality standards and proper agricultural practices including fertilization for indirect wastewater reuse, although long-term monitoring is needed to get more scientific results.

Assessment through Statistical Methods of Water Quality Parameters(WQPs) in the Han River in Korea

  • Kim, Jae Hyoun
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.2
    • /
    • pp.90-101
    • /
    • 2015
  • Objective: This study was conducted to develop a chemical oxygen demand (COD) regression model using water quality monitoring data (January, 2014) obtained from the Han River auto-monitoring stations. Methods: Surface water quality data at 198 sampling stations along the six major areas were assembled and analyzed to determine the spatial distribution and clustering of monitoring stations based on 18 WQPs and regression modeling using selected parameters. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR), cluster analysis (CA) and principal component analysis (PCA) were used to build a COD model using water quality data. Results: A best GA-MLR model facilitated computing the WQPs for a 5-descriptor COD model with satisfactory statistical results ($r^2=92.64$,$Q{^2}_{LOO}=91.45$,$Q{^2}_{Ext}=88.17$). This approach includes variable selection of the WQPs in order to find the most important factors affecting water quality. Additionally, ordination techniques like PCA and CA were used to classify monitoring stations. The biplot based on the first two principal components (PCs) of the PCA model identified three distinct groups of stations, but also differs with respect to the correlation with WQPs, which enables better interpretation of the water quality characteristics at particular stations as of January 2014. Conclusion: This data analysis procedure appears to provide an efficient means of modelling water quality by interpreting and defining its most essential variables, such as TOC and BOD. The water parameters selected in a COD model as most important in contributing to environmental health and water pollution can be utilized for the application of water quality management strategies. At present, the river is under threat of anthropogenic disturbances during festival periods, especially at upstream areas.

Estimation of Fish Habitat Suitability Index for Stream Water Quality - Case Species of Zacco platypus - (하천 수질에 대한 어류의 서식처적합도지수 산정 - 피라미를 대상으로 -)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.89-100
    • /
    • 2021
  • The conservation of stream habitats has been gaining more public attention and fish habitat suitability index (HSI) is an important measure for ecological stream habitat assessment. The fish habitat preference is affected not only by physical stream conditions but also by water quality of which HSI was not available due to the lack of field data. The purpose of this study is to estimate the HSI of Zacco platypus for water quality parameters of water temperature, dissolved oxygen (DO), and biochemical oxygen demand (BOD) using the water environment monitoring data provided by the Ministry of Environment (ME). Fish population data merged with water quality were constructed by spatio-temporal matching of nationwide water quality monitoring data with bio-monitoring data of the ME. Two types of the HSI were calculated by the Instream Flow and Aquatic Systems Group (IFASG) method and probability distribution (Weibull) fitting for the four major river basins. Both the HSIs by the IFASG and Weibull fitting appeared to represent the overall distribution and magnitude of fish population and this can be used in stream fish habitat evaluation considering water quality.