• Title/Summary/Keyword: Water quality level model

Search Result 222, Processing Time 0.032 seconds

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Quality Control Plan of Water Level in Agricultural Reservoirs using a Deep-Learning Based LSTM Model (딥러닝 기반 LSTM 모형을 이용한 농업용 저수지 수위자료 품질관리 방안)

  • Yang, Mi-Hye;Nam, Won-Ho;Shin, An-Kook;Kang, Mun-Sung;Kim, Taegon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.128-128
    • /
    • 2020
  • 최근 농업환경의 변화와 기후변화에 대응하기 위해 농업용수 관리 정보화 및 과학화의 필요성이 증대되어 실시간으로 저수지 저수량과 농업용수 공급량을 파악하기 위해 자동 수위계측시설이 도입되었다. 농림축산식품부의 저수지 자동수위측정기 설치 및 운영지침에 따라 현재 농어촌공사 관리 저수지 1,734개소 및 수로부 1,880개소에 자동수위계가 설치되어 있으며, 저수지와 수로에서 10분 간격으로 수위자료가 생성되고 있다. 농업용 저수지 수문자료의 공인지점은 2016년 6개소에서 2019년 49개소로 증대되고 있으며, 데이터 품질 저하의 최소화 및 신뢰성 있는 수문자료 생성의 필요성이 증가함에 따라 농업용 저수지의 특성을 반영한 저수지 수위 오결측 데이터 보정 방안 및 수문 자료 품질관리 방안이 요구된다. 농업용 저수지의 수위 변화 및 강우-유출 현상은 물리적 모형을 구축하여 기상, 지형 등 영향 인자와 수위(또는 유출)와의 상관관계를 분석하는 것은 무적으로 불가능하였지만, 최근 인공신경망 (Artificial Neural Network, ANN) 등과 같이 black-box 형태의 모형을 이용하여 비선형적인 수문해석이 가능해졌다. 본 연구에서는 빅데이터와 인공신경망을 결합시킨 알고리즘인 딥러닝 (Deep Learning) 기반의 LSTM (Long Short-Term Memory) 모형을 활용하여 농업용 저수지 수위자료를 검토하여 자동계측기에서 발생하는 오류 보정을 위해 품질관리 방안을 제시하고자 한다.

  • PDF

Investigation for Bed Stabilization Methods in the Upstream Channel of Haman Weir Using CCHE2D Model (CCHE2D 모형을 이용한 함안보 상류 하상안정화 방안 검토)

  • Jang, Eun Kyung;Ji, Un;Kwon, Yong Sung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2211-2221
    • /
    • 2013
  • During the four river restoration project, several weirs were constructed in the four rivers to prevent drought and flood, to improve water quality, and to manage water resources. However, due to the weir construction, bed changes are produced in the upstream channel of installed weirs because the incoming flow velocity is reduced and sediment transport capacity is also lowered. Especially, since the Haman Weir is located in the lowest downstream section among newly installed weirs in Nakdong River, bed change and sedimentation problems are expected due to the mild slope and reduced velocity. Therefore, numerical simulation was performed to analyze flow and bed changes in the upstream channel of Haman Weir and to evaluate quantitatively sediment control methods for bed stabilization using CCHE2D model. As a result of flow and bed change simulation after installation of Haman Weir, the flow velocity at the initial condition was faster than the final bed condition with the specific simulation time and it was represented that the locations where bed changes were great were identical for all modeling conditions of flow discharge. In case of 4.5 m of water level lowered from 5.0 m of the management water level at Haman Weir for bed stabilization, the flow velocity was generally faster than the case of the management water level and the continuous erosion was developed at the most narrow channel section as the applied discharge and simulation period were increased. The channel width extension at the most narrow channel section was proposed in this study to prevent and stabilize continuos bed erosion. As a result of numerical analysis, there was no bed erosion after channel width extension and it was presented that the channel geometry extension was effective for bed stabilization at Haman Weir.

A Study on the Prediction of Groundwater Contamination using GIS (GIS를 이용한 지하수오염 예측에 관한 연구)

  • Jo, Si-Beom;Shon, Ho-Woong;Lee, Kang-Won
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.17-28
    • /
    • 2004
  • This study has tried to develop the modified DRASTIC Model by supplying the parameters, such as structural lineament density and land-use, into conventional DRASTIC model, and to predict the potential of groundwater contamination using GIS in Hwanam 2 District, Gyeonggi Province, Korea. Since the aquifers in Korea is generally through the joints of rock-mass in hydrogeological environment, lineament density affects to the behavior of groundwater and contaminated plumes directly, and land-use reflect the effect of point or non-point source of contamination indirectly. For the statistical analysis, lattice-layers of each parameter were generated, and then level of confidence was assessed by analyzing each correlation coefficient. Groundwater contamination potential map was achieved as a final result by comparing modified DRASTIC potential and the amount of pollutant load logically. The result suggest the predictability of contamination potential in a specified area in the respects of hydrogeological aspect and water quality.

  • PDF

A study of artificial neural network for in-situ air temperature mapping using satellite data in urban area (위성 정보를 활용한 도심 지역 기온자료 지도화를 위한 인공신경망 적용 연구)

  • Jeon, Hyunho;Jeong, Jaehwan;Cho, Seongkeun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.855-863
    • /
    • 2022
  • In this study, the Artificial Neural Network (ANN) was used to mapping air temperature in Seoul. MODerate resolution Imaging Spectroradiomter (MODIS) data was used as auxiliary data for mapping. For the ANN network topology optimizing, scatterplots and statistical analysis were conducted, and input-data was classified and combined that highly correlated data which surface temperature, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), time (satellite observation time, Day of year), location (latitude, hardness), and data quality (cloudness). When machine learning was conducted only with data with a high correlation with air temperature, the average values of correlation coefficient (r) and Root Mean Squared Error (RMSE) were 0.967 and 2.708℃. In addition, the performance improved as other data were added, and when all data were utilized the average values of r and RMSE were 0.9840 and 1.883℃, which showed the best performance. In the Seoul air temperature map by the ANN model, the air temperature was appropriately calculated for each pixels topographic characteristics, and it will be possible to analyze the air temperature distribution in city-level and national-level by expanding research areas and diversifying satellite data.

Study of the Mitigation of Algae in Lake Uiam according to the Operation of the Chuncheon Dam and the Soyang Dam (춘천댐 및 소양강댐 운영에 따른 의암호 조류 저감 연구)

  • Lee, Dong Yeol;Baek, Kyong Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.171-179
    • /
    • 2022
  • In this study, the characteristics of algae mitigation according to dam operation were quantitatively analyzed for Uiam Lake, where the Chuncheon Dam is located upstream of the main stream, Uiam Dam is located downstream, and Soyang Dam is located in the tributary stream. Nine dam operation scenarios were applied to the event of the summer of 2018 (at that time an algae alert occurred) using the EFDC model, which is capable of calculating three-dimensional hydrodynamics and water quality levels such as those associated with chlorophyll-a. The dam operation scenarios were set to generate a flushing effect via discharges in the form of pulse waves from the upstream dams and by lowering the water level at the downstream dam. At Uiam Lake, the flushing effect was different depending on the operation of the dam, and the amount of algae reduction at each point was different owing to topographic characteristics and the different base water temperatures from BukHan River and Soyang River. With regard to a point located on the left bank, it was predicted that the peak level of chlorophyll-a would be reduced by approximately 50 % or more upon pulsed discharge at 50 m3/s for three days at Soyang Dam. However, for the right bank, the amount of discharge from Soyang Dam had little effect on algae mitigation. Therefore, an appropriate dam operation could be effective for algae mitigation at specific points in the water body where large dams exist upstream and downstream, such as at Uiam Lake, in an emergency situation in which algal blooms rapidly.

A Study on Groundwater Flow Modeling in the Fluvial Aquifer Adjacent to the Nakdong River, Book-Myeon Area, Changwon City (창원시 북면 낙동강 주변 하성퇴적층의 지하수유동 모델링 연구)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Hyoung-Su;Hahn Jeong-Sang;Ryu Su-Hee
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.499-508
    • /
    • 2004
  • Changwon City first constructed riverbank filtration plants in Book-Myeon and Daesan-Myeon in Korea in the year 2001. This study evaluated hydrogeological characteristics and groundwater flow simulation between the Nakdong River and the fluvial aquifers adjacent to the river in Book-Myeon, Changwon City. The groundwater simulation calculated the influx rate from the Nakdong River and the fluvial aquifers to pumping wells through the riverbank filtration system. The groundwater flow model utilized drilling, grain size analysis, pumping test, groundwater level measurements, river water discharge and rainfall data. Hydraulic heads calculated by the steady-state model closely matched measured heads in pumping and observation wells. According to the transient flow model, using a total pumping amount of 14,000 $m^3$/day, the flux into the pumping wells from the Nakdong River accounts for 8,390 $m^3$/day (60%), 590 $m^3$/day (4%) is from the aquifer in the rectilinea. direction to the Nakdong River, and 5,020 $m^3$/day (36%) is from the aquifer in the parallel direction to the Nakdong River. The particle tracking analysis shows that a particle from the Nakdong River moves toward the pumping wells at a rate of about 1.85 m/day and a particle from the aquifer moves toward the pumping wells at a rate of about 0.75 m/day. This study contributes to surface water/groundwater management modeling, and helps in understanding, how seasonal change affects pumping rates, water quality, and natural recharge.

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Photosynthetic Characteristics and Primary Production by Phytoplankton with Different Water Quality of Influent in Open Waters of Constructed Wetlands for Water Treatment (수질정화용 인공습지 개방수역에서 유입수질에 따른 식물플랑크톤의 광합성특성 및 유기물생산력)

  • Choi, Kwang-Soon;Hwang, Gil-Son;Kim, Dong-Sub;Kim, Sea-Won;Kim, Ho-Joon;Joh, Seong-Ju;Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.61-71
    • /
    • 2007
  • The photosynthetic characteristics and primary production by phytoplankton in open waters of two wetlands (the Banwol and the Donghwa wetland) of Sihwa Constructed Wetland with different water chemistry were investigated to provide the information for the wetland management considering the water treatment efficiency. During the study period (from March to October, 2005) the primary productivity in open waters ranged from 481 to 11,275 mgC $m^{-2}$ $day^{-1}$, which is very high compared with the eutrophic level of 600mgC $m^{-2}$ $day^{-1}$. From the analysis of the photosynthesis-irradiance (P-I) model parameters, the photosynthetic characteristics may be affected by different concentration and ratio of nutrient (N and P) between two wetlands. Assimilation number (AN) was higher in the Donghwa wetland (average AN: 8.5gC $gChl^{-1}$ $hr^{-1}$) with high P and low N/P ratio than the Banwol wetland (average AN: 5.8gC $gChl^{-1}$ $hr^{-1}$) with high N and high N/P ratio. This result indicates that AN may be concerned with phosphorus than nitrogen and low NIP ratio. Positive correlation (R=0.81) was observed between the initial slope and AN, implying that AN was high in case of phytoplankton having more active photosynthesis ability under low light. On the other hand, maximum photosynthesis (Pmax) was related positively with chlorophyll a concentration showing correlation coefficient of 0.47. In this study, considering the high primary production through phytoplankton photosynthesis in open waters of Sihwa Constructed Wetland, the produced organic matter by phytoplankton may affect the water quality within wetland and its efficiency of water treatment. Also, the photosynthetic characteristics may be affected by different nutrient enrichment (especially phosphorus) of wetlands. This study suggests that the production by phytoplankton and its characteristics in open water of constructed wetland for water treatment should be considered to improve the removal efficiency of organic matter.

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.