• Title/Summary/Keyword: Water pump

Search Result 1,494, Processing Time 0.024 seconds

Modal Testing on a High Head Pump/Turbine Runner (고낙차 수력 펌프/터빈 런너에 대한 모우드 실험)

  • 류석주;하현천;김호종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.278-282
    • /
    • 1997
  • This paper describes results of modal testing for a high head pump-turbine runner of the Muju pumped storage power plant. The head of the pump-turbine is 601 m and the outside diameter of its runner is 4,410 mm. The modal testing was done for two conditions : 1) the runner in air ; 2) the runner in water. For both conditions, obtained are natural frequencies, corresponding mode shapes and damping ratios. From the testing, it is found that the natural frequencies of the pump-turbine runner in water is reduced approximately 40 % due to additional mass effect of the water.

  • PDF

Measurement of Flow Field in a Domestic Hot-Water Pump by PIV (PIV에 의한 가정용 온수펌프의 유동장 계측)

  • Lee, H.;Im, Y. C.;Kim, J. H.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.264-271
    • /
    • 1999
  • The present experimental study is aimed to investigate the flow characteristics of the high-speed flow field within hot-water pump by PIV(Particle Image Velocimetry). As multi-point simultaneous velocity acquisition, 2-D PIV system based upon the two-frame gray-level cross correlation method is adopted using PC frame-grabber and simple video system. Gated image intensifier CCD Camera to cope with illumination problem is arranged for accurate PIV measurement of high-speed complex flow. The velocity vector distribution, velocity profile, and kinetic energy are represented quantitatively at the full-scale region for the deeper understanding of the unsteady flow characteristics in a pump.

  • PDF

Flow analysis of the Sump Pump (흡수정의 유동해석)

  • Jung, Han-Byul;Noh, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.673-680
    • /
    • 2017
  • sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

Analysis of dynamics characteristics of water injection pump through the 2D finite element (2D 유한요소 해석을 통한 Water injection pump의 동특성 분석)

  • LEE, JONG-MYEONG;KIM, YONG-HWI;KIM, JUN-HO;CHOI, HYEON-CHEOL;CHOI, BYEONG KEUN
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.408-414
    • /
    • 2014
  • After drilling operations at the offshore plant to production to crude oil to high pressure. After that time the low pressured of pipe inside when the secondary produce so oil recovery is reduced. At that time injection sea water at the pipe inside through water injection pump that the device Increase recovery so to be research and development at many industry. So developing 3-stage water injection pump at the domestic company. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic. In this paper, a 2D finite element analysis is performed through the dynamics of the present study was the validation of the model.

  • PDF

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

Application for Heating and Cooling System Using Sewage Water (100RT급 하수열원 냉난방시스템 적용)

  • Chang, Ki-Chang;Yoon, Hyung-Kee;Park, Seong-Ryong;Baik, Young-Jin;Ra, Ho-Sang;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.215-220
    • /
    • 2006
  • Along with socioeconomic development and improving standard of living, the heat demand for heating and cooling in residential and commercial sectors is expected to expand rapidly, reaching over 43 million TOE by 2010 in Korea(about 80% increase compared with that in 1995). Since most of this heat demand is loop temperature below $60^{\circ}C$, the utilization of 'unused energy' is surely one of very effective measures to both environmental preservation and energy conservation. 'Unused energy' in this paper is implicated as 'temperature differential energy' available from treated sewage water, useful and abundant heat source for heat pump(cooler in summer and warmer in winter than outside air). An analysis was carried out to estimate the energy potential of treated sewage water for heat pump heat source. Some analysis were taken to study the characteristics of a heat pump system using the treated sewage water as heat source.

  • PDF

지하수위를 고려한 양수량 추정

  • 박승기;이승기;정재훈;강성민
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.13-16
    • /
    • 2002
  • The analysis of characteristics of pumping in the small tube well for agriculture were surveyed. Study area was located at the Galsinri in Yesangun near the yedang reservoir. Agricultural electricity using rates for pumping, ground water level and volume of pumping was monitored every week. Pump working ratio and pump efficiency during period of transplanting of rice showed 48.9%, 62.7% respectively.

  • PDF

Numerical Simulation Model for Cryogenic Pump Cavitation

  • Tani, Naoki;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.234-239
    • /
    • 2004
  • In the development of rocket turbo-pump, cavitation at the inducer is one of the major problems. Cryogenic fluids are commonly used for rocket propellant, therefore, thermodynamic effect becomes noticeable compared to conventional water cavitation. In the present study, a numerical simulation method for cryogenic cavitation is proposed, which reveals the difference between cryogenic and water cavitation.

  • PDF

A1gorithm Embodiment for Automatic Pump Operation Pattern (원격지 수도시설 펌프운영 패턴의 자동화 알고리즘 구현)

  • Byun, Doo-Gyoon;Yoon, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2474-2476
    • /
    • 2003
  • An algorithm was embodied to automatic pump operation Pattern for remote control located in 60 km far. This automation pattern included least cost operation, peak load time response, pump operation time balancing etc. It was programmed four kind of operation mode as following; normal operation nude, before peak load time nude, peak load time operation, after peak load time operation.

  • PDF

The Characteristics of Energy Consumption with Operational Conditions for the Central Cooling System (냉방시스템의 운전조건에 따른 에너지 소비특성 연구)

  • Park, Gi-Tae;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.39-45
    • /
    • 2019
  • The operational conditions such as cooling tower water pump flow rate, cooling tower fan flow rate, and chiller capacity in heat source equipment, and supply air temperature and chilled water temperature in air conditioner are considered to study the effects on energy consumption for central cooling system by using TRNSYS program. As a result, the optimal values of supply air temperature and chilled water temperature for minimal total energy consumption are 12℃ and 8℃. And if maximum values of cooling tower water pump and fan flow rate is decreased from 100% to 40%, energy consumptions are increased 170MJ/day and 63.2MJ/day, respectively.