• 제목/요약/키워드: Water pollutant$BOD_5$

Search Result 196, Processing Time 0.028 seconds

Influence of the Point Source Inflow on the Water Quality Variation in the Downstream of Hyeongsan River (점오염원 유입이 형산강하류 수질변화에 미치는 영향)

  • Lee, Chang-Soo
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1075-1080
    • /
    • 2008
  • The influence of the point source inflow on the water quality variation in the downstream of Hyeongsan River was investigated. As the results of seasonal variation, the pollutant concentrations of dry season were 1.5-4 times higher than those of wet season. The increase rate of $BOD_5$, $COD_{Mn}$, T-N, T-P due to point source were ranged to $8.1\sim42.6%$, $7.3\sim41.9%$ and $17.1\sim207%$ as the inflow of P1, P2 and P3, respectively. After P1, P2 and P3 inflow, the accumulated increase rate were 64.3%, 32.6%, 93.1% and 258.9% in $BOD_5$, $COD_{Mn}$, T-N, T-P, respectively. It was found that the influence of point source inflow on the water quality in the downstream of Hyeongsan River is severe.

Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model (HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석)

  • Kim, So Rae;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.

A Study on the Regulatory Effect of the Special Water Preservation Area of Lake Paldang Watershed Based on Long-Term Variation of Pollutant Source and Water Quality (수질과 오염원의 장기적 변화를 통한 팔당호 상수원수질보전 특별대책지역 규제효과 분석)

  • Kim, Ho-Sub;Park, Yun-Hee;Kim, Yong-Sam;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • The objective of this study was to assess the effect of policies on water quality management based on the changes in pollutants and water quality in Special Water Preservation Area (SWPA) of Lake Paldang watershed from 1990 to 2016. The population, total sewage and flow rate of wastewater in SWPA continuously increased from 1990 to 2016, while the location of new facilities for industrial and livestock facilities has been restricted. However, unlike the buffer zone in which industrial and livestock facilities were continuously reduced after implementing of TMDL, it was found that the effect of land-use regulations on industrial and livestock facilities in SWPA were mitigated by the increase in the size of large facilities. Since 1999 when the emission standard of public sewage treatment plants (STP) was changed, the water quality of Lake Paldang has increased despite the increase of pollutant source. Since emission standard of STP changed in 2012 (BOD 5 mg/L, TP 0.2 mg/L), BOD concentration in Lake Paldang has also improved to the level of water quality in the early 1990s where as TP concentration has remained at its lowest since 1990. BOD and TP average discharge concentration of 43 STP (${\geq}500m^3/day$) in 2016 have been maintained $1.7{\pm}0.7mg/L$ and $0.06{\pm}0.02mg/L$ respectively. While the discharged load of STP in SWPA was decreased by the concentration management, the contribution rate to the total discharged load of non-point pollutants increased to 70 % in 2015, and the contribution rate to the point discharged load of individual treatment facilities increased to 80 %.

Characteristics of Pollution Loads from the Combined Sewer during Dry Season (무강우시 합류식 하수관거의 오염부하 특성)

  • Won, Chul-Hee;Choi, Yong-Hun;Park, Woon-Ji;Shin, Min-Hwan;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.137-144
    • /
    • 2011
  • We have examined the pollutant load of combined sewer in dry days. Two monitoring sites (C-1, C-2) were equipped with an flowmeter. Monitoring was conducted from September 2004 to April 2006 for 20 months during dry days. Flowrate and concentration of pollutants are lowest from 3 to 6 o'clock, and it is high at 9, 12 and 21 o'clock. Most of organic matters exist in the dissolved state. The results show that pollution loads in C-2 area were 4.5-7.2 times higher than in C-1. Pollutant loads were high on Saturdays. Pollutant loads (kg/ha/day) of C-2 were 1.1-3.1 times higher those of C-1. However there was no significant difference in winter. Analysis of correlation coefficient of water quality parameter indicates that besides of flowrate all items in C-1 site have tight relationship respectively (p<0.01). In C-2 site, correlation coefficient of TP-SS, TP-TN, TP-flowrate, BOD-flowrate, BOD-SS and TN-TP are statistically significant (p<0.01).

Water Quality Management using WASPS & WASP Builder for a Basin of an Agricultural Reservoir (WASP5 & WASP Builder을 이용한 농업용저수지 유역의 수질관리)

  • Chung, Paul-Gene;Goh, Hong-Seok;Hyun, Mi-Hee;Lee, Eun-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.422-431
    • /
    • 2004
  • Water quality modeling was performed for the purpose of diagnosis and prediction of water quality in Gyoung Choen reservoir, using EUTR05/WASP Build model. WASP Builder is capable of visual display in window and it has an advantage of updating and modification for data. Field data of 1992, Spring, Summer, and Fall, were used to calibrate model and these results were validated using data of 2000, Spring, Summer, and Fall. The reservoir was divided into 4 epilimnion segments. Water quality system for modeling were consist of BOD, Chlorophyll-a, DO, $NH_3-N$, $NO_3-N$, T-N, $PO_4-P$, T-P. The results of water quality modelling using EUTR05/WASP Builder, a range of the Correlation for calibration of BOD, T-N, T-P, and Chlorophyll-a according to three seasons are 0.63~0.90, 0.81~0.97, 0.75~0.98, and 0.77~0.98 respectively. And the correlation between simulated and observed values for verification of BOD, T-N, T-P, and Chlorophyll-a according to three seasons are 0.93, 0.94, 0.81, and 0.80 respectively. Among the pollutant sources for a basin of the Gyoung Choen reservoir, generated amount of livestock is the highest and BOD, T-N, T-P of generated loading percentage are 94%, 81%, and 95%. So, we suppose that inflow load amount will decrease 50% and increase 50% only livestock about current load amount. If increasing load amount of livestock 50% in segment 2 and 3, BOD, T-N, and T-P simulated increasing to range of $0.02~0.15mg/{\ell}$, $0.029~0.08mg/{\ell}$, $0.011~0.029mg/{\ell}$ in comparison with current water quality

Characteristics of Stormwater Runoff discharged from vinyl greenhouse growing area in farming area (농촌의 비닐하우스 재배지역에서 배출되는 강우유출수의 특성)

  • Jeon, Je Chan;Lee, Sang Hyeub;Kwon, Koo Ho;Lee, Jea Woon;Kwon, Heun Gag;Min, Kyung Sok
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.413-422
    • /
    • 2014
  • In national water quality policy, it changed previous regulation method that focuses on concentration of pollutants in effluent water to the way that regulates total amount of pollutants. The target of water quality in watershed of each river was set up, as the government instituted Total Maximum Daily Loads(TMDL). In order to accomplish successfully TMDL, it requires that the amount of pollutant loads discharged from point and nonpoint pollutant source should be investigated. This study, therefore, conducted the monitoring of the stormwater runoff at field region in farming area. And pollutants loads and unit loads discharged from field region results is calculated. As a result, the concentration of pollutants were calculated as follows: 10.5 BOD mg/L, 19.6 $COD_{Mn}$ mg/L, 4.5 TN mg/L and 2.4 TP mg/L. The unit load of BOD, $COD_{Mn}$, TOC, TSS, TN and TP discharged from field region, also, were determined to $31.8kg/km^2/yr$, $56.7kg/km^2/yr$, $8.5kg/km^2/yr$, $560.9kg/km^2/yr$, $8.3kg/km^2/yr$ and $5.1kg/km^2/yr$, respectively. It was identified that there were some differences of unit loads between the results obtained from this study and previous one. To calculate exact unit loads, therefore, long term monitoring should be conducted.

Case Study on the Improvement of Pollutant Removal Efficiency in Sihwa Constructed Wetland (시화호 인공습지의 수질정화기능 향상을 위한 사례연구)

  • Choi, Don-Hyeok;Kang, Ho;Choi, Kwang-Soon
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.25-33
    • /
    • 2010
  • Three plans(induction of water flow, supply of oxygen into water, control of fish causing resuspension of solids) proposed to improve the pollutant removal efficiency of Sihwa Constructed Wetland(CW) were estimated by considering the their efficiency and application to the wetland. After construction of facility for induction of water flow in lower part(W 122m${\times}$L 103m) of the wetland, the mean removal efficiencies of BOD, SS, TN and TP were in range of 12.8~37.4% and BOD was showing the highest efficiency. This result indicates that water flows is one of very important factors in the pollutant removal of wetland, especially near the outlet of a large scale wetland such as Sihwa CW. Dissolved oxygen(DO) concentrations after operation of two oxygen supply systems such as Air Bubble Diffuser and Surface Aeration System increased 15.5% and 27.2%, respectively. For maintaining effective DO concentration in Sihwa CW, the operation of oxygen supply system may be desirable during midnight to dawn in the location in which DO concentration is not enough, for instance less than 2 mg/L in CW. In experiments of the fish removal from Sihwa CW, the mean turbidity was lower in test site(6.2 NTU) than control site(10.6). The removal efficiency of thurbidity by th fish removal from the wetland was 41.5%. Therefore, a relevant fish management through a periodical monitoring of fish and turbidity is needed.

A Study on the Nonpoint Pollutant Loadings in Urban and Agricultural Areas (도시(都市)와 농촌(農村)에서의 비점원(非點源) 오염물(汚染物) 배출양상(排出樣相)에 관한 연구(硏究))

  • Lim, Bong Su;Lee, Byung Hyun;Choi, Eui So
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.45-53
    • /
    • 1984
  • This study was conducted to investigate characteristics of nonpoint pollutant discharges and concentrations in runoff from the urban and agricultural areas in Korea. The analytical parameters used for this study were COD, BOD and SS. This study was conducted during the period from May to August 1981. Nonpoint pollutant mass loadings from the urban area were influenced by the rainfall intensity and the duration of rainfall, and etc. The concentrations of pollutants in the first flush was higher as the discharges increased. It was, however, found that the concentrations of pollutants in the heavy storm runoff were decreased due to the dilution effect. When other rainfall followed a peak rainfall, the concentrations of pollutants were lower than expected, because the first flush conveyed the most of pollutants deposited on the combined sewers. However the concentrations were increased in proportion to the increased flow when a rainfall of higher intensity than the first flush was continued. Yearly area yield rates in kg/ha were estimated to be 690.5(489.9~1,328) of COD, 319.7(226.8~614.8) of BOD, and 831.2(589.7~1,598) of SS. Pollutant sources in agricultural area were of the domestic waste water, manure composting stack, and agricultural solid wastes and etc. In the paddy field, yearly area yield rates in kg/ha were estimated to be 623.4(21.7~114) of COD, 18.65(9.53~34.5) of BOD, and 91.9(46.3~171.8) of SS. In the crop land, however, yearly rates in kg/ha were estimated to be 91.9(46.3~171.8) of COD, 23.09(11.7~42.5) of BOD, and 23.09(11.4~43.4) of SS. Pollutant sources in the feedlot area were originating from the feces of cattle, the cleaning water, the wastes spilled from manure composting stack during rain. Yearly area yield rate in kg/ha was estimated to be 3.804(2,489~6,658) of COD, 2.047(464~2,900) of BOD, and 1.149 (729~1,442) of SS. Pollutant discharges in the forest area were resulted from the organic layer like leaves and others deposited on the surface. Yearly area yield rate in kg/ha was estimated to be 9.86(5.45~18.56) of COD, 3.48(1.67~7.54) of BOD, and 4.64(9.74~10.35) of SS.

  • PDF

Comparative Analysis of QUAL2E, QUAL2K and CAP Steady State Water Quality Modeling Results in Downstream Areas of the Geum River, Korea (QUAL2E, QUAL2K 및 CAP 모델을 이용한 금강 하류 하천구간 정상상태 수질모델링 결과 비교 분석)

  • Seo, Dongil;Yun, Jong Uk;Lee, Jae Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.121-129
    • /
    • 2008
  • Major factors affecting water quality in rivers are transportation, input of pollutant loads and kinetic transformation of pollutants. Government level decision makings on water quality management are based on steady state water quality modeling. However, it is more than often that such a steady state assumption is far from real situations in rivers. Therefore, it is unavoidable to have modeling errors in water quality modeling especially for steady state modeling for longer period of time. Authors attempted to identify sources of errors in results of steady state models and thus tried to find out ways to minimize those errors. Three water quality models, QUAL2E (Brown et al., 1983), QUAL2K (Chapra et al., 2006) and CAP (Seo and Lee, 2000) were applied to the lower stream of the Geum River. $BOD_5$ and COD tend to underestimate observed data while TN and TP showed relatively smaller errors. QUAL2E model provided best calibration results for BOD5 and TP and QUAL2K model showed best calibration results for TN. Since these errors are only relative values, it was difficult to conclude which model is better performing in certain situations. The most probable reasons for errors in water quality modeling are; 1) inappropriate consideration on flow characteristics, 2) lack of information on incoming pollutant load and 3) inappropriate location of sampling for water quality analysis.

Assessment of the Water Quality of Jungnang Stream by Flow Conditions Using Load Duration Curve (부하지속곡선을 이용한 중랑천의 유량 조건별 수질특성 평가)

  • Choi, Kyung-Wan;Shin, Kyung-Yong;Lee, Hyung-Jin;Jun, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.5
    • /
    • pp.438-447
    • /
    • 2012
  • Objective: The objective of this study was to suggest a method through which load duration curve was used to assess the achievement of water quality targets in accordance with the criteria for pollutant load depending on flow rate variation. Methods: The stage-discharge curve and flow duration curve of Jungnang Stream were deduced. Using water quality targets and measurement of the stream, the flow duration curve was also drawn. Based on these, the feasibility of achievement of water quality targets in respect to flow rate was assessed. Results: In terms of the load duration curve of the stream, it was observed that excess of criteria for concentrations of $BOD_5$, $COD_{Mn}$ and SS frequently occurred. On the other hand, when the flow rate was low, the concentrations of T-N and T-P exceeded the criteria. Conclusions: Through the load duration curve, the overall water quality of Jungnang Stream was understood. When the flow rate is high, management of point source of $BOD_5$, $COD_{Mn}$ and SS is needed to achieve water quality targets for Jungnang Stream. On the other hand, when the flow rate is low, the management of non-point source T-N and T-P is necessary to attain the water quality goal.