• Title/Summary/Keyword: Water plasma

Search Result 1,265, Processing Time 0.026 seconds

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Effect of O2 Plasma Treatment on the Surface Morphology and Characteristics of Poly (imide) to Develop Self-cleaning Industrial Materials (자기세정산업용 소재 개발을 위한 O2 플라즈마 처리가 Poly(imide) 필름의 표면 형태 및 특성에 미치는 영향)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.10
    • /
    • pp.1117-1124
    • /
    • 2012
  • This study was a preliminary study to investigate the influence of surface morphology and characteristics on the self-cleaning of substrates. PI film was treated by $O_2$ plasma to modify the surface; in addition, AFM and Fe-SEM were employed to examine the morphological changes induced on a PI film treated by $O_2$ plasma and surface energies calculated from measured contact angles between several solutions and PI film based on the geometric mean and a Lewis acid base method. The surface roughness of PI film treated by $O_2$ plasma increased with the duration of the $O_2$ plasma on PI film due to the increased surface etching. The contact angle of film treated by $O_2$ plasma decreased with the increased treatment time in water and surfactant solution; in addition, the surface energy increased with the increased treatment times largely attributed to the increased portion on the polar surface energy of PI film. The coefficient of the correlation between surface roughness and surface polarity such as contact angle and surface energy was below 0.35; however, it was over 0.99 for the contact angle and surface energy.

Low frequency plasma disinfectant effect in seawater and three major fish bacterial disease pathogens (저온 대기압 플라즈마를 이용한 해수 및 어류 병원성 세균 3종에 대한 살균소독효과)

  • Kim, Soo-Jin;Park, Shin-hoo;Jee, Bo-young;Kim, Yong-jae;Gwon, Mun-Gyoeng
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2020
  • Fish bacterial diseases have spread and caused serious problem for cultured marine fish in Korea. The important bacterial disease affecting mariculture such as olive flounder (Paralichthys olivaceus) are caused by Edwardsiella tarda, Vibrio scophthalmi and Streptococcus parauberis. For the bacterial disease protection in aquaculture industry, the water treatment is needed in aquaculture system. During the last decades atmospheric pressure non-thermal plasma in contact with liquids have received a lot of attention of environmental and medical application. In this study, we determined the disinfectant effect in seawater and three major fish bacterial disease pathogens by using low frequency plasma treatment. Three fish bacteria (E. tarda, V. schophthalmi, S. parauberis) were not detected within 16 min, 150 min and 270 min of 20 L, 500 L and 1 ton seawater post low frequency plasma treatment, respectively. Three major fish bacterial disease pathogens were not detected within 2 min after the low frequency plasma treatment, suggesting that the low frequency plasma possess disinfectant effectiveness.

The Effect of Low Temperature Plasma Treatment Condition on the Peel Strength of EVA Foam for Shoe Mid-sole (저온플라즈마 처리조건이 신발 중창용 EVA 발포체의 접착력에 미치는 영향)

  • Park, C.C.;Park, C.Y.
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.296-302
    • /
    • 2000
  • The surfaces of injection and pressure-molded sheets of poly(ethylene-covulylacetate)(EVA) foams used for shoe mid-sole were treated with low temperature plasma to improve adhesion with a water-based polyurethane adhesives. Several experimental variables were considered, such as radio frequency power, treating time, type of gas. gas flow, and distance between electrode and sample. The modificated surface by plasma treatment were characterized using contact angle meter, scanning electron microscopy(SEM), universal testing machine(UTM). Adhesion was tested by T-peel tests of treated EVA foams/polyurethane adhesive joints. The treatment in the low temperature plasma produced a noticeable decrease in contact angle. The peel strength of EVA foams treated with plasma was increased with plasma treating time, and gas flow.

  • PDF

Iron Determination in Rat Plasma Samples by Inductively Coupled Plasma Emission Spectrometry and Application to Pharmacokinetic Studies

  • Li, Tie-Fu;Deng, Ying-Jie;Ma, Guang-Li;Jin, Jie;Li, Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1571-1574
    • /
    • 2003
  • This paper describes an inductively coupled plasma emission spectrometric method for the analysis of Fe in rat plasma. Calibration curves were obtained in the range of 0.125-1.50 ${\mu}g{\cdot}mL^{-1}$. The relative standard deviation ranges from 5.93% to 6.80%, and accuracy was between 87.6 and 102.0%. Dilution with water had no influence on the performance of the method, which could then be used to quantify Fe concentration in plasma up to 0.50 ${\mu}g{\cdot}mL^{-1}$. The limit of quantification was 0.10 ${\mu}g{\cdot}mL^{-1}$. At this level, the average relative standard deviation was 6.8%. The results indicate that the method meets the accuracy and precision requirements for the pharmacokinetic studies. The Fe concentration in rat plasma was measured and the main pharmacokinetic parameters were calculated by Topfit 2.0 (GmbH. Shering AG, Godecke AG, Germany).

Decomposition Characteristics of Tetrafluoromethane Using a Waterjet Plasma Scrubber (워터젯 플라즈마 스크러버 사불화탄소 분해 특성)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Climate Change Research
    • /
    • v.8 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • It is recognized that tetrafluoromethane ($CF_4$) has a great influence on global warming. The $CF_4$ is known to have a large impact on climate change due to its large global warming index. In this study, a waterjet plasma scrubber (WPS) was designed and manufactured for the $CF_4$ decomposition. The WPS is a novel technology which is combined a gliding arc plasma and water injection at the center of the plasma discharge. This can give an innovative way for $CF_4$ decomposition by achieving larger plasma columnand generating OH radicals. A performance analysis was achieved for the design factors such as waterjet flow rate, total gas flow rate, consumption electric power, and electrode gap. The highest $CF_4$ decomposition and energy efficiencies were 64.8% and 6.43 g/kWh, respectively; Optimal operating conditions were 20 mL/min of waterjet flow rate, 200 L/min total gas flow rate, 5.3 kW consumption electric power, and 4.4 mm electrode gap. As for the 2 stage reactor of the WPS, the $CF_4$ decomposition efficiency improved as the 85.3% while the energy efficiency decreased as the 5.57 g/kWh.

Effect of Oxygen Plasma Treatment on the Surface and Tensile Properties of Stainless Steel Fibers (산소 플라즈마 처리가 스테인레스 스틸 섬유의 표면 및 인장특성에 미치는 영향)

  • Kwon, MiYeon;Lim, Dae Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.102-108
    • /
    • 2022
  • The physicochemical properties of stainless steel fibers which were modified by oxygen plasma treatment were analyzed through microscopy and XPS analysis. The wettability of the surface of the stainless steel fiber was observed by measuring water contact angle to find out the effect of the plasma treatment time on the surface characteristics of the stainless steel fiber. In addition, in order to understand the effect of oxygen plasma treatment on the deterioration of the stainless steel fiber properties, the physical properties due to plasma treatment was investigated by measuring the weight reduction, tensile strength, elongation, tensile modulus of the stainless steel fibers according to the treatment time. As a result, the stainless steel fiber surface was etched by the oxygen plasma and the surface became more wettable by the introduction of hydrophilic functional groups. However the physical properties of the stainless steel fiber were not significantly deteriorated even if the surface of the stainless steel fiber made hydrophilic.

Reduction Kinetics of Gold Nanoparticles Synthesis via Plasma Discharge in Water

  • Sung-Min Kim;Woon-Young Lee;Jiyong Park;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.386-392
    • /
    • 2023
  • In this work, we describe the reduction kinetics of gold nanoparticles synthesized by plasma discharge in aqueous solutions with varied voltages and precursor (HAuCl4) concentrations. The reduction rate of [AuCl4]- was determined by introducing NaBr to the gold colloidal solution synthesized by plasma discharge, serving as a catalyst in the reduction process. We observed that [AuCl4]- was completely reduced when its characteristic absorption peak at 380 nm disappeared, indicating the absence of [AuCl4]- for ligand exchange with NaBr. The reduction rate notably increased with the rise in discharge voltage, attributable to the intensified plasma generated by ionization and excitation, which in turn accelerated the reduction kinetics. Regarding precursor concentration, a lower concentration was found to retard the reduction reaction, significantly influencing the reduction kinetics due to the presence of active H+ and H radicals. Therefore, the production of strong plasma with high plasma density was observed to enhance the reduction kinetics, as evidenced by optical emission spectroscopy.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Effects of Aralia elata, Acanthopanacis cortex and Ulmus davidiana Water Extracts on Plasma Biomarkers in Streptozotocin - Induced Diabetic Rats (두릅, 오가피 및 느릅 열수추출물이 Streptozotocin 투여 흰쥐의 혈장바이오마커에 미치는 영향)

  • Shin, Kyong-Hee;Cho, Soo-Yeul;Lee, Mi-Kyung;Lee, Jeong-Sook;Kim, Myung-Joo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.9
    • /
    • pp.1457-1462
    • /
    • 2004
  • This study was conducted to investigate the effects of Aralia elata, Acanthopanacis cortex and Ulmus davidiana water extracts on plasma glucose and biomarkers in the streptozotocin (STZ)-induced diabetic rats. Male Wistar rats were divided into normal and diabetic groups. The diabetic groups subdivided into the control group (DM), Aralia elata (DM-AE), Acanthopanacis cortex (DM-AC) and Ulmus davidiana (DM-UD). The extracts were supplemented in diet base on 11.42 g of raw materials/㎏ diet for 7 weeks. The diabetes was induced by injecting STZ (55 ㎎/㎏ B.W., i.p.) once 2 weeks before sacrifying. Plasma glucose level was significantly higher in the DM group than in the normal group, whereas insulin and C-peptide concentrations were significantly lowered in the DM groups compared to the normal group. These parameters were normalized in the DM-AE, DM-AC and DM-UD supplemented groups. Plasma albumin content was significantly lowered in the DM group compared to the normal group, yet it was significantly higher in the DM-AE group than in the DM group. Bilirubin and creatinine contents were elevated in the DM group, while the supplementation of Aralia elata, Acanthopanacis cortex and Ulmus davidiana water extracts ameliorate the change of these contents in STZ-induced diabetic rats. Plasma AST, ALT, ALP and LDH activities were significantly higher in the DM group than in the normal groups. The supplementation of Araliaceae family water extracts significantly lowered these parameters compared to the DM group. Accordingly, these results indicate that Aralia elata, Acanthopanacis cortex and Ulmus davidiana water extracts would seem to improve the glucose and biomarker in STZ-induced diabetic rats.