• Title/Summary/Keyword: Water pipe

Search Result 1,710, Processing Time 0.025 seconds

Heat Transfer Correlations for Air-Water Two-Phase Flow of Different Flow Patterns In a Horizontal Pipe

  • Kim, Dongwoo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1711-1727
    • /
    • 2001
  • Heat transfer coefficient were measured and new correlations were developed for two-phase heat transfer in a horizontal pipe for different patterns. Flow patterns were observed in a transparent circular pipe (2.54 cm I. D. and L/D=96) using an air/water mixture. Visual identification of the flow patterns was supplemented with photographic data and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air-water heat transfer experimental data with good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.

  • PDF

Reduction Techniques of the Pipe Line net Using According to DVGW (DVGW이론에 따른 상수관망의 부식방지를 위한 정수처리방안)

  • Choo Tai-Ho;Kim Ha-Il
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.11a
    • /
    • pp.115-118
    • /
    • 2005
  • Leakage of waterworks pipe line net cause loss of water resources, additional foundation of pressurization facilities from pressure loss and soil weakening near leaked pipe line, etc. This is difficult to maintain and manage waterworks pipe line net and to cause serious economic loss. Rate of accounted water is better by monitoring always water pressure and flux, etc. from isolated region, positively dealing with leakage accident and preventing leakage from occurring. Actually after isolating region, average rate of accounted water in this region is 88.94% by continuously monitering control of water pressure and inflow rate. It is about 9.44% more than that of Busan metropolitan city in 2003, 79.5%.

  • PDF

Colonization of Microbial Biofilms in Pipeline of Water Reuse

  • Kumjaroen, Teratchara;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2014
  • Aim of this study was to investigate biofilms attached in pipeline of water reuse from the MBR system treating sewage without chlorination in correlation to the outflow water quality. Two general pipe materials: polyvinyl chloride (PVC) and polyethylene (PE) were employed in the experiment. The peak growths were found at week 4 in both pipes. The maximum biofilms in PE pipe was $33mgVSS/cm^2$ with the growth rate of $4.75mgVSS/cm^2-d$ which was significant higher than that of PVC pipe. Biofilms examined by PCR-DGGE technique revealed five bacterial species in PE biofilms namely Sinorhizobium medicae WSM419, Sinorhizobium fredii NGR234, Geobacter sp. M18, Parachlamydia acanthamoebae UV-7, and Mycobacterium chubuense NBB4. The VSS concentrations in outflow had directly correlated to the biofilm attachment and detachment. High COD concentrations of outflow appeared during biofilm detaching phase. In summary, water quality of reuse water corresponded to the biofilms attachment and detachment in the pipeline.

A Study on Heavy Metals at the Consumer s Tap in Seoul (서울市 一部 水道栓水中 重金屬에 관한 調査硏究)

  • Lee, Byung Mu
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.2
    • /
    • pp.41-51
    • /
    • 1984
  • This study was performed using samples collected at Myungryundong and at Reservoirs. The purpose of this study was to investigate the differences of water quality between tap and raw water, and to analyse drinking water quality by Fe, Zn from corroded galvanized steel pipe. Results were as follows 1. The older the pipe was, the higher the concentration of Ferrum and Zinc was (t-test : p<0.05). Ferrum and Zinc also exceeded the limits in the older galvanized steel pipe. I think that this comes from the corrosion of pipe. 2. Mercury, Arsenic, Cadmium, Lead, Chomium, Argentum and Aurum not detected in raw water were not detected in tap water. Cobalt, Bismuth and Molybudenum detected in raw water were not detected in tap water. I think that this comes from the quality of raw water, the result of water treatment and the improbability of detection of above metals in water delivery system. 3. Silicon measured 2.4698ppm in raw water, but it ranged from 0.4769ppm to 1.982 ppm in tap water. Manganese measured 0.0638ppm in raw water, but it ranged from 0.0026ppm to 0.0198ppm in 17cases(31%) out of 55samples in tap water. I think that this comes from the water treatment. 4. Aluminium not detected in raw water was found in 17 cases (31%) out of the samples (55cases). It may be considered as the use of coagulants $Al_2(SO_4)_3$. $18H_2O$ and PAC (Poly Aluminium Chloride). The concentration of copper in tap water was much higher in 2 cases(3.6%) out of the samples(55) than that of copper in raw water. I think that this may come from the use of ${CuSO}_4$, the preventive of algae growth, and the result of chlorination, but further study must be necoessary to support the proof.

  • PDF

Evaluation of Pressurized Water Mixing of Big Pipe with CFD at Water Treatment Process (CFD를 활용한 수처리공정 대형관에서 압력수 혼합공정 평가)

  • Cho, Young-Man;Yu, Hyun-chul;Jang, Gyeong-Hyuk;Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.168-174
    • /
    • 2021
  • Mixing is a very important unit in water treatment process. A mechanical stirring method is generally used for mixing, but recently, the use of pressurized water mixing method (pump diffusion flash mixer) has gained interest because it is more advantageous in terms of mixing time, noise, energy consumption, and maintenance. The following conclusions were obtained from the study of pressurized water mixing method by Computational Fluid Dynamics. Firstly, the mixing degree in the pipe increased as the density of water increased. Secondly, even if the relative velocity between flow rate in the pipe and the pressurized water was constant, the mixing degree decreased as the flow velocity in the pipe increased. Thirdly, the stronger the injection energy the higher the mixing degree. It was also found that the mixing degree was greatly affected by the injection velocity as compared to the injection flow amount. Finally, the required energy to achieve 95% mixing degree at the distance of 10 times diameter in big pipes of 500 mm to 3000 mm was 0.3 to 4.5 kJ. The result of this study could be used in the process design of injection with water purification chemicals, such as, ozone, chlorine, and coagulant.

A Methodology for Evaluating the Superiority between Different Valve Distributions Based on Pipe and Valve Failure Simulation (상수관로와 밸브 파괴모의를 기반으로 한 다른 제수밸브 분포간의 우열성 평가방법)

  • Jun, Hwan-Don;Park, Su-Wan
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.495-502
    • /
    • 2007
  • For a water distribution system, it is necessary to evaluate the superiority between different valve distributions in order to improve the reliability of the water distribution system. In cases of placing more valves to an exiting system or building a new system, we suggest a methodology to select a proper valve distribution after various valve distributions are compared. The suggested methodology is based on simulations of pipe and valve failures to estimate failure impacts of the water distribution system due to pipe and valve failures. It is quantified by the number of customers out of service per pipe failure resulted from pipe and valve failures. To demonstrate its applicability, the methodology is applied to a real water distribution system with two different valve distributions and determines the superiority between those valve distributions. Also, customers out of service along with various valve reliabilities are estimated for those valve distributions to prove the effect of the valve reliability on the reliability of a water distribution system.

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF

Pressure Wave Propagation in the Discharge Piping with Water Pool

  • Bang Young S.;Seul Kwang W.;Kim In-Goo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.285-294
    • /
    • 2004
  • Pressure wave propagation in the discharge piping with a sparger submerged in a water pool, following the opening of a safety relief valve, is analyzed. To predict the pressure transient behavior, a RELAP5/MOD3 code is used. The applicability of the RELAP5 code and the adequacy of the present modeling scheme are confirmed by simulating the applicable experiment on a water hammer with voiding. As a base case, the modeling scheme was used to calculate the wave propagation inside a vertical pipe with sparger holes and submerged within a water pool. In addition, the effects on wave propagation of geometric factors, such as the loss coefficient, the pipe configuration, and the subdivision of sparger pipe, are investigated. The effects of inflow conditions, such as water slug inflow and the slow opening of a safety relief valve are also examined.

A Numerical Study on the Reduction of Water Hammering in a Simple Water Supply Pipe System

  • Lim, Ki-Won;Cha, Dong-Jin
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.51-61
    • /
    • 2001
  • A numerical study has been conducted to characterize the transient pressure in a simple water supply pipe system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for validation in the study agree quite well with the previously reported. Several parameters are than varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^\circ{C}$ and 0.8m/s, respectively. Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

Characteristics of Acoustic Waves That Propagate in Buried Iron Water Pipes (매립된 유체함입 강파이프의 파동전파 특성규명)

  • Park, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.65-70
    • /
    • 2006
  • A study of the possible axisymmetric modes that propagate at low frequencies in buried, water-filled iron pipes is presented. It is well known that for a vacuum-pipe-vacuum system the sole non-torsional axisymmetric mode that exists at low frequencies is the fundamental L(0,1) mode. When a pipe is filled with water and still surrounded by a vacuum it is also known that another mode then appears which at low frequencies is characterized by predominantly axial water-borne displacements. In addition to these modes, this paper explores two other, less well known axisymmetric modes whose existence depends on the acoustic properties of the outer medium that surrounds a pipe. In this paper the predicted characteristics of these modes are presented.

  • PDF