• Title/Summary/Keyword: Water phantom

Search Result 374, Processing Time 0.021 seconds

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • Kim, Hoi-Nam
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.11-22
    • /
    • 1998
  • The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Application of IAEA TRS-398 Protocol to Gamma Knife Model C (감마나이프 C모델에 대한 IAEA TRS-398 프로토콜의 적용)

  • Chung, Hyun-Tai
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.194-201
    • /
    • 2007
  • Although Gamma Knife irradiates much more radiation in a single session than conventional radiotherapy, there were only a few studies to measure absolute dose of a Gamma Knife. Especially, there is no report of application of International Atomic Energy Agency (IAEA) TRS-398 which requires to use a water phantom in radiation measurement to Gamma Knife. In this article, the authors reported results of the experiments to measure the absorbed dose to water of a Gamma Knife Model C using the IAEA TRS-398 protocol. The absorbed dose to water of a Gamma Knife model C was measured using a water phantom under conditions as close as possible to the IAEA TRS-398 protocol. The obtained results were compared with values measured using the plastic phantom provided by the Gamma Knife manufacturer. Two Capintec PR-05P mini-chambers and a PTW UNIDOS electrometer were used in measurements. The absorbed dose to water of a Gamma Knife model C inside the water phantom was 1.38% larger than that of the plastic phantom. The current protocol provided by the manufacturer has an intrinsic error stems from the fact that a plastic phantom is used instead of a water phantom. In conclusion, it is not possible to fully apply IAEA TRS-398 to measurement of absorbed dose of a Gamma Knife. Instead, it can be a practical choice to build a new protocol for Gamma Knife or to provide a conversion factor from a water phantom to the plastic phantom. The conversion factor can be obtained in one or two standard laboratories.

  • PDF

Design of Multipurpose Phantom for External Audit on Radiotherapy

  • Lim, Sangwook
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.122-129
    • /
    • 2021
  • Purpose: This study aimed to design a multipurpose dose verification phantom for external audits to secure safe and optimal radiation therapy. Methods: In this study, we used International Atomic Energy Agency (IAEA) LiF powder thermoluminescence dosimeter (TLD), which is generally used in the therapeutic radiation dose assurance project. The newly designed multipurpose phantom (MPP) consists of a container filled with water, a TLD holder, and two water-pressing covers. The size of the phantom was designed to be sufficient (30×30×30 cm3). The water container was filled with water and pressed with the cover for normal incidence to be fixed. The surface of the MPP was devised to maintain the same distance from the source at all times, even in the case of oblique incidence regardless of the water level. The MPP was irradiated with 6, 10, and 15 MV photon beams from Varian Linear Accelerator and measured by a 1.25 cm3 ionization chamber to get the correction factors. Monte Carlo (MC) simulation was also used to compare the measurements. Results: The result obtained by MC had a relatively high uncertainty of 1% at the dosimetry point, but it showed a correction factor value of 1.3% at the 5 cm point. The energy dependence was large at 6 MV and small at 15 MV. Various dosimetric parameters for external audits can be performed within an hour. Conclusions: The results allow an objective comparison of the quality assurance (QA) of individual hospitals. Therefore, this can be employed for external audits or QA systems in radiation therapy institutions.

Conversion Factors for Calibration of Personnel Dosimeters (개인선량계 교정을 위한 환산인자 계산)

  • Lee, Won-Koo;Lee, Tae-Young;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.25-32
    • /
    • 1991
  • MCNP code was used to calculate conversion factor H(d)ma at the depths of 0.07 and 10mm within a water phantom recommended by IAEA and within a PMMA phantom required by the US dosimeter proficiency testing programmes. The calculations were performed for an expanded parrallel beam of monoenergetic photons of perpendicular incidence on one faces of the phantom. The results can be used as conversion factor in calibrating individual dosemeters in terms of the dose equivalent quantities defined directly in the phantom.

  • PDF

Evaluation of Planning Dose Accuracy in Case of Radiation Treatment on Inhomogeneous Organ Structure (불균질부 방사선치료 시 계획 선량의 정확성 평가)

  • Kim, Chan Yong;Lee, Jae Hee;Kwak, Yong Kook;Ha, Min Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • Purpose: We are to find out the difference of calculated dose of treatment planning system (TPS) and measured dose in case of inhomogeneous organ structure. Materials and Methods: Inhomogeneous phantom is made with solid water phantom and cork plate. CT image of inhomogeneous phantom is acquired. Treatment plan is made with TPS (Pinnacle3 9.2. Royal Philips Electronics, Netherlands) and calculated dose of point of interest is acquired. Treatment plan was delivered in the inhomogeneous phantom by ARTISTE (Siemens AG, Germany) measured dose of each point of interest is obtained with Gafchromic EBT2 film (International Specialty Products, US) in the gap between solid water phantom or cork plate. To simulate lung cancer radiation treatment, artificial tumor target of paraffin is inserted in the cork volume of inhomogeneous phantom. Calculated dose and measured dose are acquired as above. Results: In case of inhomogeneous phantom experiment, dose difference of calculated dose and measured dose is about -8.5% at solid water phantom-cork gap and about -7% lower in measured dose at cork-solid water phantom gap. In case of inhomogeneous phantom inserted paraffin target experiment, dose difference is about 5% lower in measured dose at cork-paraffin gap. There is no significant difference at same material gap in both experiments. Conclusion: Radiation dose at the gap between two organs with different electron density is significantly lower than calculated dose with TPS. Therefore, we must be aware of dose calculation error in TPS and great care is suggested in case of radiation treatment planning on inhomogeneous organ structure.

  • PDF

Utility Evaluation of Supportive Devices for Interventional Lower Extremity Angiography (인터벤션 하지 혈관조영검사를 위한 보조기구의 유용성 평가)

  • Kong, Chang gi;Song, Jong Nam;Jeong, Moon Taek;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.613-621
    • /
    • 2019
  • The purpose of this study is to evaluate the effectiveness of supportive devices which are for minimizing the patient's movement during lower extremity angiography and to verify image quality of phantom by analyzing of Mask image, DSA image and Roadmap image into SNR and CNR. As a result of comparing SNR with CNR of mask image obtained by DSA technique using the phantom alone and phantom placed on the supportive devices, there was no significant difference between about 0~0.06 for SNR and about 0~0.003 for CNR. The study showed about 0.11~0.35 for SNR and 0.016~0.031 for CNR of DSA imaging by DSA technique about only water phantom of the blood vessel model and the water phantom placed on the device. Analyzing SNR and CNR of Roadmap technique about water phantom on the auxiliary device (hardboard paper, pomax, polycarbonate, acrylic) and water phantom alone, there was no significant difference between 0.02~0.05 for SNR and 0.002~0.004 for CNR. In conclusion, there was no significant difference on image quality by using supportive devices made by hardboard paper, pomax, polycarbonate or acryl regardless of whether using supportive devices or not. Supportive devices to minimize of the patient's movement may reduce the total amount of contrast, exam-time, radiation exposure and eliminate risk factors during angiogram. Supportive devices made by hardboard paper can be applied easily during angiogram due to advantages of reasonable price and simple processing. It is considered that will be useful to consider cost efficiency and types of materials and their properties in accordance with purpose and method of the study when the operator makes and uses supportive devices.

Study of Doppler Fluid Effects of Carbonated Water in a Bi-directional Flow Phantom Model (양방향 흐름 팬텀 모델에서 탄산수의 도플러 유체 효과 연구)

  • Ji-Hye Kim;Yeong-Cheol Heo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.83-91
    • /
    • 2024
  • The purpose of this study was to determine the doppler fluid effects of carbonated water (CBW) in a bi-directional flow phantom model. A bi-directional flow phantom model was chosen to realize arterial and venous flow, and the structure of the inner and outer tanks allowed for fluid circulation and also made the size of the phantom small. Carbonated water (CBW), salt fluid (SAF), sugar fluid (SUF), and distilled water (DW) were used as fluids, and ultrasound scans were performed at depths of 1.5 cm and 3.0 cm from the surface of the tank, using B-mode and color Doppler effects. All fluids tested showed color Doppler effects, but CBW had the highest doppler shift and the least variation with depth. In conclusion, we determined that CBW was the most suitable fluid to be used as a doppler fluid and confirmed that the bubbles dissolved in CBW act as doppler scatterers, just like red blood cells inside human blood. Therefore, it is possible that CBW can be used as a blood-mimicking fluid in doppler ultrasound phantoms through further research, and this study will provide basic data.

A Study on the absorbed dose to water for high energy electron beams using Water equivalency of plastic phantom (고 에너지 전자선에서 물등가 고체팬톰을 이용한 물 흡수선량 측정에 관한 연구)

  • Sin, Dong-Ho;Sin, Dong-Oh;Kim, Sung-Hoon;Park, Sung-Yong;Ji, Young-Hoon;Ahn, Hee-Kyung;Kang, Jin-Oh;Hong, Seong-Eon
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.166-169
    • /
    • 2004
  • In the International Code of Practice for dosimetry TRS-398 published by International Atomic Energy Agency(IAEA), water equivalency plastic phantom may be used under certain circumstances for electron beam dosimetry for beam quality E0${\leq}$ 10 MeV. In this study, Palstic Water$^{TM}$ and Virtual Water$^{TM}$ were evaluated in order to determine fluence scaling factor hpl. Plastic phantom was evaluated for five electron energy from 6 MeV to 20 MeV. From the measured data of Palstic Water$^{TM}$, the fluence scaling factor hpl was found to be average 0.9964 and Virtual Water$^{TM}$ fluence scaling factor was 1.0156.

  • PDF

Development of a Pelvic Phantom for Dose Verification in High Dose Rate (HDR) Brachytherapy

  • Jang, Ji-Na;Suh, Tae-Suk;Huh, Soon-Nyung;Kim, Hoi-Nam;Yoon, Sei-Chul;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.150-153
    • /
    • 2002
  • High dose rate (HDR) brachytherapy in the treatment of cervix carcinoma has become popular, because it eliminated many of the problems with conventional brachytherapy. In order to improve clinical effectiveness with HDR brachytherapy, dose calculation algorithm, optimization procedures, and image registrations should be verified by comparing the dose distributions from a planning computer and those from a humanoid phantom irradiated. Therefore, the humanoid phantom should be designed such that the dose distributions could be quantitatively evaluated by utilizing the dosimeters with high spatial resolution. Therefore, the small size of thermoluminescent dosimeter (TLD) chips with the dimension of 1/8" and film dosimetry with spatial resolution of <1mm used to measure the radiation dosages in the phantom. The humanoid phantom called a pelvic phantom is made of water and tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators are inserted into the grooves of the applicator supporters. The dose distributions around the applicators, such as Point A and B, can be measured by placing a series of TLD chips (TLD-to- TLD distance: 5mm) in three TLD holders, and placing three verification films in orthogonal planes.

  • PDF