• Title/Summary/Keyword: Water permeation layer

Search Result 74, Processing Time 0.024 seconds

Solubilization of Quercetin , and Permeability Study of Quercetin and Rutin to Rabbit Duodenal Mucosa (퀘르세틴의 가용화 , 퀘르세틴 및 루틴의 토끼 십이지장 점막 투과성)

  • Chun, In-Koo;Seo, Eun-Ha
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.59-69
    • /
    • 1998
  • To increase the solubility of quercetin, which is a practically insoluble flavonoid of Ginkgo biloba leaf, the effects of nonaqueous vehicles. Their cosolvents, water-sol uble polymers and modified cyclodextrins (CDs) were observed. Polyethylene glycols, diethyleneglycol monoethyl ether, and their cosolvents with water showed a good solvency toward quercetin. Also the aqueous solutions of povidone, copolyvidone and Cremophor RH 40 was effective in solubilizing quercetin. Complex formation of quercetin with ${\beta}$-cyclodextrin (${\beta}$-CD), dimethyl-${\beta}$-cyclodextiin (DMCD), 2-hydroxypropyl-${\beta}$-cyclodextrin (HPCD) and ${\beta}$-cyclodextrin sulfobutyl ether (SBCD) in water was investigated by solubility method at $37^{\circ}C$. The addition of CDs in water markedly increased the solubility of quercetin with increasing the concentration. AL type phase solubility diagrams were obtained with CDs studied. Solubilizaton efficiency by CDs was in the order of SBCD >> DMCD > HPCD > ${\beta}$-CD. The dissolution rates of quercetin from solid dispersions with copolyvidone, povidone and HPCD were much faster than those of drug alone and corresponding physical mixtures, and exceeded the equilibrium solubility (3.03${\pm}1.72{\mu}$g/ml). The permeation of quercetin through duodenal mucosa did not occur even in the presence of enhancers such as bile salts, but the permeation was observed when the mucus layer was scraped off. This was due to the fact that quercetin had a strong binding to mucin ($58.5{\mu}$g/mg mucin). However rutin was permeable to the duodenal mucosa. The addition of enhancer significantly increased the permeation of rutin in the order of sodium glycocholate.

  • PDF

A Study on Permeability of Stratified soil in the Close State Under Existence of Stagnant Water. (담수상태에 있어서 성층토양의 물의 침투에 관한 연구)

  • 조경용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.3
    • /
    • pp.3477-3491
    • /
    • 1974
  • Following are the results of the study on the property of falling permeation of stratified soil in the close state under existence of stagnant water on a soil layer. 1. When on the stratified soil a least permeating layer was put on the soil layer the load Pressure was present owing to appearance of saturation close state driving decrease of the pressure in the lower layer, on the other hand when the least permeating layer was placed under the layer the lower least permeating layer pressure was decreased. 2. In the case of least permeating layer the variation of current gradient according to the respective level after treating the layer was enormous and due to usal storage phenomena for the Kl layer which was coarse that was trifle. 3. The permeability of the respective layer of stratified soil in the close state died not always coincide with that of single layer. 4. Generally Zunker's equation of average permeability was valid but actually calculated permeating velocity after treating the layer of stratified soil was seriously differ from the measured value owing to the variation of current gradient, especially when the pressure head at the layer boundany was discontinuous the validity of the equation of average permeability was seemed to be doubtful. 5. The permeating velocity of stratified soil was regulated by the least permeating layer, i.e. it is thought to be rational to estimate the value by calculating the current gradient with its proper permeability, pressure headon the layer and its thickness.

  • PDF

Characteristics of $Al_2O_3/TiO_2$ multi-layers as moisture permeation barriers deposited on PES substrates using ECR-ALD

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.457-457
    • /
    • 2010
  • Flexible organic light emitting diodes (F-OLEDs) requires excellent moisture permeation barriers to minimize the degradation of the F-OLEDs device. Specifically, F-OLEDs device need a barrier layer that transmits less than $10^{-6}g/m^2/day$ of water and $10^{-5}g/m^2/day$ of oxygen. To increase the life time of F-OLEDs, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. Thus, $Al_2O_3/TiO_2$ multi-layer was deposited onto the polyethersulfon (PES) substrate by electron cyclotron resonance atomic layer deposition (ECR-ALD), and the water vapor transmission rates (WVTR) were measured. WVTR of moisture permeation barriers is dependent upon density of films and initial state of polymer surface. A significant reduction of WVTR was achieved by increasing density of films and by applying low plasma induced interlayer on the PES substrate. In order to minimize damage of polymer surface, a 10 nm thick $TiO_2$ was deposited on PES prior to a $Al_2O_3$ ECR-ALD process. High quality barriers were developed from $Al_2O_3$ barriers on the $TiO_2$ interlayer. WVTR of $Al_2O_3$ by introducing $TiO_2$ interlayer was recorded in the range of $10^{-3}g/m^2.day$ at $38^{\circ}C$ and 100% relative humidity using a MOCON instrument. The WVTR was two orders of magnitude smaller than $Al_2O_3$ barriers directly grown on PES substrate without the $TiO_2$ interlayer. Thus, we can consider that the $Al_2O_3/TiO_2$ multi-layer passivation can be one of the most suitable F-OLEDs passivation films.

  • PDF

Pervaporation of TFEA/MA/Water Mixtures through PVA Composite Membranes

  • Ahn, Sang-Man;Kim, Jeong-Hoon;Lee, Yong-Taek;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.133-147
    • /
    • 2005
  • In order to investigate applicability for 2,2,2-trifluoroethyl methacrylate (TFEMA) produced by esterification of 2,2,2-trifluoroethanol(TFEA) and methacrylic acid(MA) using pervaporation membrane, poly(vinyl alcohol) (PVA) composite membranes were prepared with glutaraldehyde(GA) onto porous polyethersulfone(PES) support. The degree of crosslinking and thickness of PVA coating layer were analyzed by swelling test and SEM(scanning electron microscopy), respectively. Pervaporation test was done with two feed mixures; TFEA/water, MA/water. The pervaporation data were obtained as a function of content of crosslinking agent, feed composition, and operating temperature, respectively. In case of TFEA-water(90/10 wt%) feed mixture at $80^{\circ}C$, the optimized membrane showed the high permeation flux of 1.5 $kg/m^2hr$ and separation factor of 320. In case of MA-water(90/10 wt%) feed mixture, the membranealso showed high permeation flux of 2.3 $kg/m^2hr$ and separation factor of 740 in same conditions.

  • PDF

Water vapor permeation properties of $Al_2O_3/TiO_2$ passivation layer on a poly (ether sulfon) substrate

  • Gwon, Tae-Seok;Mun, Yeon-Geon;Kim, Ung-Seon;Mun, Dae-Yong;Kim, Gyeong-Taek;Han, Dong-Seok;Sin, Sae-Yeong;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.160-160
    • /
    • 2010
  • Organic electronic devices require a passivation layer to ensure sufficient lifetime. Specifically, flexible organic electronic devices need a barrier layer that transmits less than $10^{-6}\;g/m^2/day$ of water and $10^{-5}\;g/m^2/day$ of oxygen. To increase the lifetime of organic electronic device, therefore, it is indispensable to protect the organic materials from water and oxygen. Severe groups have reported on multi-layerd barriers consisting inorganic thin films deposited by plasma enhenced chemical deposition (PECVD) or sputtering. However, it is difficult to control the formation of granular-type morphology and microscopic pinholes in PECVD and sputtering. On the contrary, atomic layer deoposition (ALD) is free of pinhole, highly uniform, conformal films and show good step coverage. In this study, the passivation layer was deposited using single-process PEALD. The passivation layer, in our case, was a bilayer system consisting of $Al_2O_3$ films and a $TiO_2$ buffer layer on a poly (ether sulfon) (PES) substrate. Because the deposition temperature and plasma power have a significant effect on the properties of the passivation layer, the characteristics of the $Al_2O_3$ films were investigated in terms of density under different deposition temperatures and plasma powers. The effect of the $TiO_2$ buffer layer also was also addressed. In addition, the water vapor transmission rate (WVTR) and organic light-emitting diode (OLEDs) lifetime were measured after forming a bilayer composed of $Al_2O_3/TiO_2$ on a PES substrate.

  • PDF

Effect of the Structure of the Smallest Poresize Layer on the Permeability of PES Microfiltration Membranes (최소 기공층 구조가 PES계 정밀여과막 투과 성능에 미치는 영향)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • PES (polyethersulfone) membranes with highly enhanced their asymmetry were prepared by phase inversion process. The membranes were prepared by using PES/DMF (N,N-dimethylformamide)/TSA (p-toluenesulfonic acid)/PVP (polyvinylpyrrolidone) casting solution and water coagulant. The pre-coagulation of membrane surface which was induced by an addition of TSA as a demixing agent and PVP as a swelling polymer in the PES solution and humid exposure time, played a crucial role in determining morphological properties and the PWP (pure water permeation) performance. The PES solution was coated on polyester film under condition of 80% humidity for a while ($72{\sim}144$ sec) before immersing in a coagulation bath. The characterization of membranes was carried out by a capillary flow porometer, a FE-SEM and a permeation test apparatus. As the thickness of the smallest pore size layer (SPL) decreased, the asymmetry of membrane increased under conditions of 20 wt% of TSA and 10 wt% of PVP in 11 wt% of PES solution during longer humid contact time. As a result, the membranes showed a remarkable increase of PWP.

Optimized Synthesis Conditions of Polyethersulfone Support Layer for Enhanced Water Flux for Thin Film Composite Membrane

  • Son, Moon;Choi, Hyeongyu;Liu, Lei;Park, Hosik;Choi, Heechul
    • Environmental Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • Different types of polyethersulfone (PES) support layer for a thin film composite (TFC) membrane were synthesized under various synthesis conditions using the phase inversion method to study the combined effects of substrate, adhesive, and pore former. The permeability, selectivity, pore structure, and morphology of the prepared membranes were analyzed to evaluate the membrane performance. The combined use of substrate, adhesive, and pore former produced a thinner dense top layer, with more straight finger-like pores. The pure water permeation (PWP) of the optimized PES membrane was $27.42L/m^2hr$ (LMH), whereas that of bare PES membrane was 3.24 LMH. Moreover, membrane selectivity, represented as divalent ion ($CaSO_4$) rejection, was not sacrificed under the synthesis conditions, which produced the dramatically enhanced PWP. The high permeability and selectivity of the PES membrane produced under the optimized synthesis conditions suggest that it can be utilized as a potential support layer for TFC membranes.

Preparation and Permeation Characteristics of Alumina Composite Membranes by CVD and Evaporation-Oxidation Process (화학증착 및 증발-산화법에 의한 알루미나 복합분리막의 제조 및 투과특성)

  • 안상옥;최두진;현상훈;정형진;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.8
    • /
    • pp.678-684
    • /
    • 1993
  • Alumina composite membranes were prepared by chemical vapor deposition and evaporation-oxidation process. For CVD process, deposition was carried out using aluminum-tri-isopropoxide at 35$0^{\circ}C$, 2 torr by heterogeneous reaction, and for evaporation-oxidation process, alumina composite membranes were prepared by evaporation of aluminum and dry oxidation at 80$0^{\circ}C$. As deposition time increases, water flux and N2 gas permeability of the composite membranes prepared by both processes were reduced. Applying gas permeation model, permeability and cracking possibility of top layer were evaluated.

  • PDF

Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium

  • Oliveira, Elizabeth E.M.;Barbosa, Celina C.R.;Afonso, Julio C.
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.231-242
    • /
    • 2012
  • The performance of a nanofiltration membrane for treatment of a low-level radioactive liquid waste was investigated through static and dynamic tests. The liquid waste ("carbonated water") was obtained during conversion of $UF_6$ to $UO_2$. In the static tests membrane samples were immersed in the waste for 24, 48 or 72 h. The transport properties of the samples (hydraulic permeability, permeate flow, selectivity) were evaluated before and after immersion in the waste. In the dynamic tests the waste was permeated in a permeation flow front system under 0.5 MPa, to determine the selectivity of NF membranes to uranium. The surface layer of the membrane was characterized by zeta potential, field emission microscopy, atomic force spectroscopy and infrared spectroscopy. The static test showed that the pore size distribution of the selective layer was altered, but the membrane surface charge was not significantly changed. 99% of uranium was rejected after the dynamic tests.

Study on the Water Vapor Permeation Properties of the Inorganic Thin Composite Film for the Passivation Layer in the OLED (유기 EL 보호층으로 적용하기 위한 무기 복합 박막의 투습율 특성 연구)

  • 김광호;이주원;김영철;주병권;김재경
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.432-438
    • /
    • 2004
  • In this study, we investigated the WVTRs Properties of inorganic thin composite films(ITCFs) to be newly adopted as the passivation layer of the OLED to replace the inorganic compound material Because we thought that inorganic compound materials were limited to enhance the barrier property of thin film. So, ITCFs were fabricated by mixing the cooperated material with the base material. And then, ITCFs were deposited onto the plastic substrate using the electron beam evaporation system and the water vapor transmission rates(WVTRs) were measured using the Mocon equipment. As a result of the WVTR measurement, we could analyze the WVTR values for various ITCFs. ITCFs had a remarkably lower value than the inorganic compound film. Through the analysis of thin film, we can understand the crystal structure and mixed amount. Therefore, ITCFs can be used as the inorganic passivation layers of OLED with the inorganic compound film.