• Title/Summary/Keyword: Water level detection

Search Result 262, Processing Time 0.024 seconds

Determination of Trace Uranium in Human Hair by Nuclear Track Detection Technique

  • Chung, Yong-Sam;Moon, Jong-Hwa;Zinaida En;Cho, Seung-Yeon;Kang, Sang-Hoon;Lee, Jae-Ki
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.225-230
    • /
    • 2001
  • The aim of this study is to describe a usefulness of nuclear analytical technique in assessing and comparing the concentration levels through the analysis of uranium using human hair sample in the field of environment. A fission track detection technique was applied to determine the uranium concentration in human hair. Hair samples were collected from two groups of people - a) workers not dealing with uranium directly, and b) workers possibly contaminated with uranium. The concentration of $^{235}$ U for the first group varied from <1 to 39 ng/g and the second group can be estimated up to the level of $\mu$g/g. Radiographs of heavy-duty work samples contained high dense “hot spots” along a single hair. After washing in acetone and distilled water, external contamination was not totally removed. Insoluble uranium compounds were not completely washed out. The (n, f)- radiography technique, having high sensitivity, and capable of getting information on uranium content at each point of a single hair, is an excellent tool for environmental monitoring.

  • PDF

Complexity of Groundwater Flow System in a Site Reflected in the Fluctuations of Groundwater Level and Temperature (지하수위와 수온 변동에 나타난 부지 규모 지하수 흐름장의 복잡성)

  • Jonghoon Park;Dongyeop Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.563-570
    • /
    • 2022
  • This study was objected to show the complexity of groundwater flow system in a site-scale area as a design parameter of the groundwater monitoring network for early detection of pollutant leakage from a potential source of groundwater contamination (e.g., storage tank). Around the tanks, three monitoring wells were installed at about 22~25 m deep and groundwater level and temperature had been monitored for 22 months by 2-minute interval, and then compared with precipitation and temperature data from nearby weather station. Annual variation of groundwater level and its response to precipitation event, variation of groundwater temperature and delayed response to that of atmospheric temperature indicate the complexity of groundwater flow and flow paths even in the relatively small area. Thus, groundwater monitoring network for early detection of contaminant leakage should be designed with full consideration of the complexity of groundwater flow system, identified from the detailed hydrogeological investigation of the site.

Experiment and Analysis of Backscattering Signals According to Presence or Absence of Chloroform (클로로폼 침적 유무에 따른 후방산란신호 측정 실험 및 분석)

  • Him Chan Seo;Jee Woong Choi;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.18-22
    • /
    • 2022
  • Because it is difficult to apply direct and optical detection techniques to sunken hazardous and noxious substances (HNS), effective acoustic detection techniques are required to detect sunken HNS in water. In this study, the possibility of acoustic detection of sunken HNS was investigated through backscattering signal measurement experiments using chloroform, a sunken HNS. After establishing a pool in an acrylic tank, backscattering signals were measured according to the presences or absence of chloroform by varying the grazing angle from 90° to 50° in 0.5° intervals using a pan&tilt system. A directional transducer transmitted and received sinusoidal signals with a frequency of 200 kHz and a pulse length of 25 ㎲ in a monostatic state. When chloroform was deposited, the received level of the backscattering signal at the interface between water and chloroform became low at a grazing angle of approximately 80° or smaller. Based on the backscattering signal results obtained at the interface between water and chloroform, the possibility of acoustic detection of sunken HNS was demonstrated.

Polychlorinated Biphenyl Contaminations of Water, Soils and Sediments Sampled from Various Places of Korea (국내의 다양한 장소에서 채취된 수질, 토양 및 저질시료의 폴리염화비페닐에 의한 오염도)

  • Park, Hyun-Mee;Ryu, Jae-Chun;Kim, Young-Man;Lee, Kang-Bong
    • Analytical Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.802-809
    • /
    • 2000
  • Concentrations of polychlorinated biphenyl congeners (PCBs) in samples collected from 43 kindss of water, 35 kinds of soil and 11 kinds of sediment in various place of Korea have been monitored using GC/MS/SIM analytical method. In our investigation, mean recoveries were $83.8{\pm}10.4%$ for water, $94.9{\pm}12.2%$ for soil and sediment samples and $80.2{\pm}8.7%$ for the spiked $^{13}C{_{12}}$-PCBs. Detection limits of PCBs for water, soil and sediment samples are 0.01 ng/ml and 0.05 ng/g. PCB congeners in water samples were not detected within quantitation limit, but trace amounts were detected in most of soil and sediment samples. The contamination level of PCBs in Korea was evaluated to be lower than in advanced countries like USA, Europe and Japan.

  • PDF

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection (색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.87-100
    • /
    • 2021
  • With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.

Design, analyses, and evaluation of a spiral TDR sensor with high spatial resolution

  • Gao, Quan;Wu, Guangxi;Yu, Xiong
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.683-699
    • /
    • 2015
  • Time Domain Reflectometry (TDR) has been extensively applied for various laboratory and field studies. Numerous different TDR probes are currently available for measuring soil moisture content and detecting interfaces (i.e., due to landslides or structural failure). This paper describes the development of an innovative spiral-shaped TDR probe that features much higher sensitivity and resolution in detecting interfaces than existing ones. Finite element method (FEM) simulations were conducted to assist the optimization of sensor design. The influence of factors such as wire interval spacing and wire diameter on the sensitivity of the spiral TDR probe were analyzed. A spiral TDR probe was fabricated based on the results of computer-assisted design. A laboratory experimental program was implemented to evaluate its performance. The results show that the spiral TDR sensor featured excellent performance in accurately detecting thin water level variations with high resolution, to the thickness as small as 0.06 cm. Compared with conventional straight TDR probe, the spiral TDR probe has 8 times the resolution in detecting the water level changes. It also achieved 3 times the sensitivity of straight TDR probe.

Analysis of temperature monitoring data for leakage detection of earth dam (흙댐의 누수구역 판별을 위한 온도 모니터링 자료의 해석)

  • Oh, Seok-Hoon;Seo, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.39-45
    • /
    • 2008
  • Temperature variation according to space and time on the inner parts of engineering constructions(e.g.: dam, slope) can be a basic information for diagnosing their safety problem. In general, as constructions become superannuated, structural deformation(e.g.: cracks, defects) could be occurred by various factors. Seepage or leakage of water through these cracks or defects in old dams will directly cause temperature anomaly. Groundwater level also can be easily observed by abrupt change of temperature on the level. This study shows that the position of seepage or leakage in dam body can be detected by multi-channel temperature monitoring using thermal line sensor. For this, diverse temperature monitoring experiments for a leakage physical model were performed in the laboratory. In field application of an old earth fill dam, temperature variations for water depth and for inner parts of boreholes located at downstream slope were measured. Temperature monitoring results for a long time at the bottom of downstream slope of the dam showed the possibility that temperature monitoring can provide the synthetic information about flowing path and quantity of seepage of leakage in dam body.

  • PDF

Determination of the Residual Ethylene Oxide in Quasi-drugs (의약외품중 산화에칠렌가스의 잔류량 분석)

  • 이정표;김경옥;손경훈;양성준;백옥진
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.437-441
    • /
    • 2001
  • The quasi-drugs including nonwoven fabric and gauze were sterilized using ethylene oxide (EO) gas. Residual EO in the quasi-drugs was extracted with water (20 mL of water for 1 g of sample) for 24h at 37$^{\circ}C$. Residual EO was determined using GC. The optimal analytical conditions were as follows : column, Carbowax 20M (1.D. 0.2 mm); mobile phase, helium with 30 mL/min; oven temperature 57$^{\circ}C$, injector temperature 18$0^{\circ}C$, detector temperature 20$0^{\circ}C$. The detection limit for EO was 0.10$\mu$g/mL. When the residual EO extracted from nonwoven fabric and gauze was determined, it took more than 9h to get the lower level than 25 ppm which is the limit value of FDA guideline. When the EO residues, ethylene chlorohydrine (ECH) and ethylene glycol (EG) in the 7 commercially available quasi-drugs were determined, no residual EO, ECH, EG were found from the seven commercially available quasi-drugs analyzed by this method.

  • PDF

Development of a Real-time Radiation Level Monitoring Sensor for Building an Underwater Radiation Monitoring System (수중 방사선 감시체계 구축을 위한 실시간 방사선 준위 모니터링 센서 개발)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.96-100
    • /
    • 2015
  • In the present study, we developed a real-time radiation-monitoring sensor for an underwater radiation-monitoring system and evaluated its effectiveness using reference radiation sources. The monitoring sensor was designed and miniaturized using a silicon photomultiplier (SiPM) and a cerium-doped-gadolinium-aluminum-gallium-garnet (Ce:GAGG) scintillator, and an underwater wireless monitoring system was implemented by employing a remote Bluetooth communication module. An acrylic water tank and reference radiation sources ($^{137}Cs$, $^{90}Sr$) were used to evaluate the effectiveness of the monitoring sensor. The underwater monitoring sensor's detection response and efficiency for gamma rays and beta particles as well as the linearity of the response according to the gammaray intensity were verified through an evaluation. This evaluation is expected to contribute to the development of base technology for an underwater radiation-monitoring system.

Determination of Water Soluble Trace Gass in Ambient Air by Condenser-type Diffusion Denuder Coupled Ion Chromatography

  • 장인형;최낙현;이보경;이동수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.329-332
    • /
    • 1999
  • An automated method is developed for simultaneous determination of water soluble gases at parts per trillion level in the environmental air. The method involves temperature-humidity control of sample air using a thermostated humidifier, collection of analyte gases by condenser-type effluent diffusion denuder and subsequent effluent analysis by ion chromatography. The detection limits (3(σ) of the method for CH3COOH, HNO2 and SO2 gases are 0.022, 0.019 and 0.009 ppbv, respectively. The precisions range from 0.3 to 3.0% RSD. The method has been successfully applied to urban air analysis and some results for nitrous acid and SOx, in Seoul air are presented.