• Title/Summary/Keyword: Water level data

Search Result 2,000, Processing Time 0.03 seconds

Outlier Detection of Real-Time Reservoir Water Level Data Using Threshold Model and Artificial Neural Network Model (임계치 모형과 인공신경망 모형을 이용한 실시간 저수지 수위자료의 이상치 탐지)

  • Kim, Maga;Choi, Jin-Yong;Bang, Jehong;Lee, Jaeju
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.1
    • /
    • pp.107-120
    • /
    • 2019
  • Reservoir water level data identify the current water storage of the reservoir, and they are utilized as primary data for management and research of agricultural water. For the reservoir storage management, Korea Rural Community Corporation (KRC) installed water level stations at around 1,600 agricultural reservoirs and has been collecting the water level data every 10 minutes. However, various kinds of outliers due to noise and erroneous problems are frequently appearing because of environmental and physical causes. Therefore, it is necessary to detect outlier and improve the quality of reservoir water level data to utilize the water level data in purpose. This study was conducted to detect and classify outlier and normal data using two different models including the threshold model and the artificial neural network (ANN) model. The results were compared to evaluate the performance of the models. The threshold model identifies the outlier by setting the upper/lower bound of water level data and variation data and by setting bandwidth of water level data as a threshold of regarding erroneous water level. The ANN model was trained with prepared training dataset as normal data (T) and outlier (F), and the ANN model operated for identifying the outlier. The models are evaluated with reference data which were collected reservoir water level data in daily by KRC. The outlier detection performance of the threshold model was better than the ANN model, but ANN model showed better detection performance for not classifying normal data as outlier.

Correlation Analysis with Reservoir, River, and Groundwater Level Data Sets in Nakdong River Watershed (낙동강 하류지역의 저수지, 하천 및 지하수위 자료의 상관관계 분석)

  • Yang, Jeong-Seok;Yoo, Ga-Young;Ahn, Tae-Youn;Kim, Jung-Eun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1151-1154
    • /
    • 2008
  • The water level data sets among hydrologic observation data are correspond to the hydraulic head for each observation point and determine flow direction. The level difference among reservoir, river, and groundwater determines groundwater flow direction, just like water flows in the downstream direction because the water level of upstream point is higher than that of downstream point. We can analyze the relationship among the components in hydrologic cycle by comparing the water level differences. This research dealt with the data from Nakdong river watershed in Gyungsangnam-Do. Three data group are used for the analysis and onr group is composed of reservoir, river, and groundwater data sets. The data sets are closely(within 10 km) located in the interested area.

  • PDF

PREDICTION OF THE REACTOR VESSEL WATER LEVEL USING FUZZY NEURAL NETWORKS IN SEVERE ACCIDENT CIRCUMSTANCES OF NPPS

  • Park, Soon Ho;Kim, Dae Seop;Kim, Jae Hwan;Na, Man Gyun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.373-380
    • /
    • 2014
  • Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

Best Measurement Capability and Standard Test Facility for the Water-level Gauges (수위계 표준시험장치 개발 및 최고측정능력에 관한 연구)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.1012-1017
    • /
    • 2007
  • Rain data and water-level data are importantly used for dam operation at flood period. Because dams are directly controlled by the water-level data, the characteristic of the water-level gauges is necessary to be managed. Thus, we developed the standard test facility and method for testing the water-level gauges which are a float type, a supersonic type and a radar type. And we calculated the uncertainty of the standard test facility to maintain the accuracy of water-level gauges. Through development of this facility, we could obtain the characteristics and the calibration factor of the water-level gauges. And, this study showed that the standard test facility can be widely used for dam operation and basin management.

River Water Level Prediction Method based on LSTM Neural Network

  • Le, Xuan Hien;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.147-147
    • /
    • 2018
  • In this article, we use an open source software library: TensorFlow, developed for the purposes of conducting very complex machine learning and deep neural network applications. However, the system is general enough to be applicable in a wide variety of other domains as well. The proposed model based on a deep neural network model, LSTM (Long Short-Term Memory) to predict the river water level at Okcheon Station of the Guem River without utilization of rainfall - forecast information. For LSTM modeling, the input data is hourly water level data for 15 years from 2002 to 2016 at 4 stations includes 3 upstream stations (Sutong, Hotan, and Songcheon) and the forecasting-target station (Okcheon). The data are subdivided into three purposes: a training data set, a testing data set and a validation data set. The model was formulated to predict Okcheon Station water level for many cases from 3 hours to 12 hours of lead time. Although the model does not require many input data such as climate, geography, land-use for rainfall-runoff simulation, the prediction is very stable and reliable up to 9 hours of lead time with the Nash - Sutcliffe efficiency (NSE) is higher than 0.90 and the root mean square error (RMSE) is lower than 12cm. The result indicated that the method is able to produce the river water level time series and be applicable to the practical flood forecasting instead of hydrologic modeling approaches.

  • PDF

Hourly Water Level Simulation in Tancheon River Using an LSTM (LSTM을 이용한 탄천에서의 시간별 하천수위 모의)

  • Park, Chang Eon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.51-57
    • /
    • 2024
  • This study was conducted on how to simulate runoff, which was done using existing physical models, using an LSTM (Long Short-Term Memory) model based on deep learning. Tancheon, the first tributary of the Han River, was selected as the target area for the model application. To apply the model, one water level observatory and four rainfall observatories were selected, and hourly data from 2020 to 2023 were collected to apply the model. River water level of the outlet of the Tancheon basin was simulated by inputting precipitation data from four rainfall observation stations in the basin and average preceding 72-hour precipitation data for each hour. As a result of water level simulation using 2021 to 2023 data for learning and testing with 2020 data, it was confirmed that reliable simulation results were produced through appropriate learning steps, reaching a certain mean absolute error in a short period time. Despite the short data period, it was found that the mean absolute percentage error was 0.5544~0.6226%, showing an accuracy of over 99.4%. As a result of comparing the simulated and observed values of the rapidly changing river water level during a specific heavy rain period, the coefficient of determination was found to be 0.9754 and 0.9884. It was determined that the performance of LSTM, which aims to simulate river water levels, could be improved by including preceding precipitation in the input data and using precipitation data from various rainfall observation stations within the basin.

Water level forecasting for extended lead times using preprocessed data with variational mode decomposition: A case study in Bangladesh

  • Shabbir Ahmed Osmani;Roya Narimani;Hoyoung Cha;Changhyun Jun;Md Asaduzzaman Sayef
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.179-179
    • /
    • 2023
  • This study suggests a new approach of water level forecasting for extended lead times using original data preprocessing with variational mode decomposition (VMD). Here, two machine learning algorithms including light gradient boosting machine (LGBM) and random forest (RF) were considered to incorporate extended lead times (i.e., 5, 10, 15, 20, 25, 30, 40, and 50 days) forecasting of water levels. At first, the original data at two water level stations (i.e., SW173 and SW269 in Bangladesh) and their decomposed data from VMD were prepared on antecedent lag times to analyze in the datasets of different lead times. Mean absolute error (MAE), root mean squared error (RMSE), and mean squared error (MSE) were used to evaluate the performance of the machine learning models in water level forecasting. As results, it represents that the errors were minimized when the decomposed datasets were considered to predict water levels, rather than the use of original data standalone. It was also noted that LGBM produced lower MAE, RMSE, and MSE values than RF, indicating better performance. For instance, at the SW173 station, LGBM outperformed RF in both decomposed and original data with MAE values of 0.511 and 1.566, compared to RF's MAE values of 0.719 and 1.644, respectively, in a 30-day lead time. The models' performance decreased with increasing lead time, as per the study findings. In summary, preprocessing original data and utilizing machine learning models with decomposed techniques have shown promising results for water level forecasting in higher lead times. It is expected that the approach of this study can assist water management authorities in taking precautionary measures based on forecasted water levels, which is crucial for sustainable water resource utilization.

  • PDF

Design and Implementation of IoT-Based Intelligent Platform for Water Level Monitoring (IoT 기반 지능형 수위 모니터링 플랫폼 설계 및 구현)

  • Park, Jihoon;Kang, Moon Seong;Song, Jung-Hun;Jun, Sang Min
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.177-186
    • /
    • 2015
  • The main objective of this study was to assess the applicability of IoT (Internet of Things)-based flood management under climate change by developing intelligent water level monitoring platform based on IoT. In this study, Arduino Uno was selected as the development board, which is an open-source electronic platform. Arduino Uno was designed to connect the ultrasonic sensor, temperature sensor, and data logger shield for implementing IoT. Arduino IDE (Integrated Development Environment) was selected as the Arduino software and used to develop the intelligent algorithm to measure and calibrate the real-time water level automatically. The intelligent water level monitoring platform consists of water level measurement, temperature calibration, data calibration, stage-discharge relationship, and data logger algorithms. Water level measurement and temperature calibration algorithm corrected the bias inherent in the ultrasonic sensor. Data calibration algorithm analyzed and corrected the outliers during the measurement process. The verification of the intelligent water level measurement algorithm was performed by comparing water levels using the tape and ultrasonic sensor, which was generated by measuring water levels at regular intervals up to the maximum level. The statistics of the slope of the regression line and $R^2$ were 1.00 and 0.99, respectively which were considered acceptable. The error was 0.0575 cm. The verification of data calibration algorithm was performed by analyzing water levels containing all error codes in a time series graph. The intelligent platform developed in this study may contribute to the public IoT service, which is applicable to intelligent flood management under climate change.

Hydrological Modelling of Water Level near "Hahoe Village" Based on Multi-Layer Perceptron

  • Oh, Sang-Hoon;Wakuya, Hiroshi
    • International Journal of Contents
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • "Hahoe Village" in Andong region is an UNESCO World Heritage Site. It should be protected against various disasters such as fire, flooding, earthquake, etc. Among these disasters, flooding has drastic impact on the lives and properties in a wide area. Since "Hahoe Village" is adjacent to Nakdong River, it is important to monitor the water level near the village. In this paper, we developed a hydrological modelling using multi-layer perceptron (MLP) to predict the water level of Nakdong River near "Hahoe Village". To develop the prediction model, error back-propagation (EBP) algorithm was used to train the MLP with water level data near the village and rainfall data at the upper reaches of the village. After training with data in 2012 and 2013, we verified the prediction performance of MLP with untrained data in 2014.

Development of a System of r Regular Evaluation of Streamflow Data (KOwaco's Regular Streamflow Appraising System)

  • Noh, jae-Kyoung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.24-30
    • /
    • 2000
  • A system for evaluating streamflow data (KORSAS) was developed, and is operated using PC based Windows to help the hydrological observation practitioner's working in Korea Water Resources Corporation (KOWACO). This system has modules including; DB access and data management, flow measurement arranging, H-Q relation deriving, area rainfall calculating, flow calculating, and flow evaluating modules. Evaluation of observed streamflow is accomplished through the following processes. First, hourly streamflow data is calculated from water level data stored in a DB server by applying the rating relationship between water level and flow rates derived from the past flow measurements. Second, hourly areal rainfal data is calculated from point data stored in the DB server by applying Thiessen networks. Third, hydrographs are displayed on a daily, weekly, monthly, or seasonal duration basis, and are compared to hydrographs of reservoir inflow, hydrographs at water level observation stations and hydrographs derived from simulated results using models.

  • PDF