• Title/Summary/Keyword: Water impact

Search Result 3,222, Processing Time 0.028 seconds

Impact of Milling Method on Quality Parameters of Waxy Sorghum Flour (제분방법에 따른 찰수수 가루의 품질 특성)

  • Ryu, Bog-Mi;Kim, Chang-Soon
    • Korean journal of food and cookery science
    • /
    • v.29 no.2
    • /
    • pp.129-135
    • /
    • 2013
  • The objective of this research was to investigate physicochemical properties of waxy sorghum flours by different milling methods (pin mill and ultra fine mill). Four different sorghum flours were used for the experiments ; PWS (pin milled whole sorghum flour), PS (pin milled sorghum flour without bran), UFWS (ultra fine milled whole sorghum flour), UFS (ultra fine milled sorghum flour without bran). The contents of crude ash and total dietary fiber were the highest in PWS. Amylose content of pin milled sorghum flour was higher than that of ultra fine milled flour. The mean particle size of pin milled flours was six times lager than ultra fine milled flours. The L values of UFS and UFWS were higher than those of PS and PWS, whereas a and b values were higher in PWS. The water binding capacity was highest in UFWS, and solubility was higher in PS and UFS. Swelling power of flours was highest in UFS. The damaged starch content was higher in PS and UFS, which means damaged starch of sorghum flours significantly affected by polishing than milling method. The pasting properties were higher in the pin milled flours. Initial pasting temperature of pin milled flour was ranging from 70.5 to $73.1^{\circ}C$, which are higher than ultra fine milled flour ($68.6^{\circ}C$). The contents of total polyphenol were higher in PWS and UFWS than those of PS and UFS, there was no difference between the two milling methods. The results of this study indicate that physicochemical properties of sorghum flour were affected by milling methods as well as bran.

Experimental Study on Moisture Content According to Addition of Surfactants (계면활성제 첨가에 따른 함수율에 관한 실험적 연구)

  • Kim, Nam-Kyun;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.79-83
    • /
    • 2015
  • The fire accident is a representative type of disaster that can largely impact on business. Therefore, precautionary measures and rapid initial response is very important when a disaster occurs. The storage of porous combustibles is inevitable in coal yard, plywood processing industry, and others that are currently operating. Initial fire fighting of fire and identifying the ignition point in such a porous combustible storage space are so difficult that if the initial response is failed, being led to deep-seated fire, surface fire is likely to result in secondary damage. In addition, deep-seated fire can cause personal injuries and property damage due to a large amount of toxic gases and reignition. Therefore damage reduction measures is required around the storage space to handle a porous flammable. Improving the penetration performance of the concentration of the surfactant is carried out as underlying study, which is about an deep-seated fire extinguishing efficiency augmentation when using wetting agents. The porous materials used in the experiments is radiata pine wood flour, which occupies more than 75% of the domestic wood market. Fire fighting water is selected as Butyl Di Glycol (BDG), which is being used for infiltration extinguishing agent, and the experiment was carried out by producing a standard solution. The experiment was carried out on the basis of the Deep-Seated Fire Test of NFPA 18. The amount of watering, porous material to the internal amount of penetration, and runoff measurement out of the porous material was conducted. According to experimental results, as the surface tension is reduced, the surfactant concentration macroscopic penetration rate decreases, but infiltration to a porous material is shown to have growth characteristics.

Development of Composite Sensing Technology Using Internet of Things (IoT) for LID Facility Management (LID 시설 관리를 위한 사물인터넷(IoT) 활용 복합 센싱 적용기술 개발)

  • Lee, Seungjae;Jeon, Minsu;Lee, Jungmin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.312-320
    • /
    • 2020
  • Various LIDs with natural water circulation function are applied to reduce urban environmental problems and environmental impact of development projects. However, excessive Infiltration and evaporation of LID facilities dry the LID internal soil, thus reducing plant and microbial activity and reducing environmental re duction ability. The purpose of this study was to develop a real-time measurement system with complex sensors to derive the management plan of LID facilities. The test of measurable sensors and Internet of Things (IoT) application was conducted in artificial wetlands shaped in acrylic boxes. The applied sensors were intended to be built at a low cost considering the distributed LID and were based on Arduino and Raspberry Pi, which are relatively inexpensive and commercialized. In addition, the goal was to develop complex sensor measurements to analyze the current state o f LID facilities and the effects of maintenance and abnormal weather conditions. Sensors are required to measure wind direction, wind speed, rainfall, carbon dioxide, Micro-dust, temperature and humidity, acidity, and location information in real time. Data collection devices, storage server programs, and operation programs for PC and mobile devices were developed to collect, transmit and check the results of measured data from applied sensors. The measurements obtained through each sensor are passed through the Wifi module to the management server and stored on the database server in real time. Analysis of the four-month measurement result values conducted in this study confirmed the stability and applicability of ICT technology application to LID facilities. Real-time measured values are found to be able to utilize big data to evaluate the functions of LID facilities and derive maintenance measures.

Evaluation of the Effect of Mine Drainage on the Aquatic Environment by Quantitative Real-time PCR (실시간 정량 중합효소연쇄반응을 이용한 광산 배수의 수계 영향 평가)

  • Han, Ji-Sun;Seo, Jang-Won;Ji, Won-Hyun;Park, Hyun-Sung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.121-130
    • /
    • 2010
  • Metals and sulfate can be considerably dissolved at low pH condition in the acid mine drainage(AMD) and it would make an environmental problems. There are only few of acid mine drainage treatment systems in Korea which are operating, but these still have an effect on the surrounding stream. In this study, quantification of indicator microorganisms was conducted to judge the environmental impact of AMD on microflora by quantitative real-time PCR in the drainage samples of four mines and the water samples of each surrounding stream. Two species of iron reducing bacteria(Rhodoferax ferrireducens T118 and Acidiphilium cryptum JF-5) were selected for indicator bacteria based on 16S rRNA cloning analysis, and sulfate reducing bacteria(Desulfosporosinus orientus), iron and sulfur oxidizing bacteria(Acidothiobacillus ferrooxidans) and iron oxidizing bacteria(Leptosprillum ferrooxidans) were included into indicator since these were found in the previous studies on the mining area. Thereafter, the comparative analysis of four mines were established by the microbiological variation index and it was determined that the biological environment effect of AMD is highest in Samtan mine which doesn t contain treatment system by the value.

Study on the Desulfurization Characteristic of Limestone Depending on the Operating Parameters of In-Furnace Desulfurization for Oxy-Fuel Combustion Using Drop Tube Furnace (순산소연소 조건에서 Drop tube furnace를 이용한 운전변수에 따른 석회석의 탈황특성 연구)

  • Choi, Wook;Jo, Hang-Dae;Choi, Won-Kil;Park, Yeong-Sung;Keel, Sang-In;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.857-864
    • /
    • 2011
  • Oxy-fuel combustion with many advantages such as high combustion efficiency, low flue gas flow rate and low NOx emission has emerged as a promising CCS technology for coal combustion facilities. In this study, the effects of the direct sulfation reaction on $SO_2$ removal efficiency were evaluated in a drop tube furnace under typical oxy-fuel combustion conditions represented by high concentrations of $CO_2$ and $SO_2$ formed by gas recirculation to control furnace combustion temperature. The effects of the operating parameters including the reaction temperature, $CO_2$ concentration, $SO_2$ concentration, Ca/S ratio and humidity on $SO_2$ removal efficiency were investigated experimentally. $SO_2$ removal efficiency increased with reaction temperature up to 1,200 due to promoted calcination of limestone reagent particles. And $SO_2$ removal efficiency increased with $SO_2$ concentrations and the humidity of the bulk gas. The increase of $SO_2$ removal efficiency with $CO_2$ concentrations showed that $SO_2$ removal by limestone was mainly done by the direct sulfation reaction under oxy-fuel combustion conditions. From the impact assessment of operation parameters, it was shown that these parameters have an effects on the desulfurization reaction by the order of the Ca/S ratio > residence time > $O_2$ concentration > reaction temperature > $SO_2$ concentration > $CO_2$ concentration > water vapor. The semi-empirical model equation for to evaluate the effect of the operating parameters on the performance of in-furnace desulfurization for oxy-fuel combustion was established.

Chromaticity Improvement of PEG Waste from Wire Sawing of Silicon Ingot (실리콘 잉곳 절삭시 발생하는 폐 PEG 색도 개선에 관한 연구)

  • Cho, Yun-Kyeong;Jung, Kyeong-Youl;Sim, Min-Seok;Lee, Gi-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.310-316
    • /
    • 2012
  • The chromaticity of polyethylene glycol (PEG) generated from the recyling of a silicone slurry waste was improved by using activated carbon powder and a carbon filter. The color change of the PEG waste was investigated by changing the amount of adsorbent, adsorption time and temperature. The surface area of activated carbon did not have a significant impact on improving the color of the PEG waste. According to the results for the APHA color variation of the PEG waste changing the amount of the carbon adsorbent, the optimal usage to achieve the low APHA value was 100~150 mg-C/g-PEG. From the investigatnion on the effect of the adsorption temperature range from $25^{\circ}C$ to $100^{\circ}C$, it was found that the optimal temperatures were $40{\sim}50^{\circ}C$ in terms of achieving the lowest APHA value. The variation of the APHA color was investigated by changing the operation condition of the activated carbon filters. The use of ACF was a good way to enhance the chromaticity of the PEG waste. As a result, the APHA value of the PEG waste (APHA=53 at the initial waste) was reduced to be 10 through the ACF purification. It was also confirmed that the performance of the used carbon adsorbent can be recovered by the washing with purified water.

Study on Correlation between Dynamic Cone Resistance and Shear Strength for Frozen Sand-Silt Mixtures under Low Confining Stress (낮은 구속응력에서 모래-실트 혼합토의 동결강도 평가를 위한 동적 콘 저항력 및 전단강도 상관성 연구)

  • Kim, Sangyeob;Lee, Jong-Sub;Hong, Seungseo;Byun, Yong-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.5-12
    • /
    • 2016
  • Investigation of in-situ ground in cold region is difficult due to low accessibility and environmental factors. In this study, correlation between dynamic cone resistance and shear strength is suggested to estimate the strength of frozen soils by using instrumented dynamic cone penetrometer. Tests were conducted in freezing chamber after preparing sand-silt mixture with 2.3% water content. Vertical stresses of 5 kPa and 10 kPa were applied during freezing, shearing, and penetration phase to compare the dynamic cone resistance and shear strength. The dynamic cone resistance, additionally, is calculated to minimize the effect of energy loss during hammer impact. Experimental results show that as the shear strength increases, the dynamic cone penetration index (DCPI) decreases nonlinearly, while the dynamic cone resistance increases linearly. This study provides the useful correlation to evaluate strength properties of the frozen soils from the dynamic cone penetration and direct shear tests.

Evaluation of the Behavior of Dredged Materials in Ocean Dumping Area (해양투기장에서 준설토의 투기에 따른 거동 평가)

  • Lee, Joong-Woo;Oh, Dong-Hoon;Lee, Seung-Chul;Kim, Hyung-Chul;Kim, Kang-Min
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.433-438
    • /
    • 2006
  • When we consider to develop a new harbor, the most important factor, we think, is the lowest water depth of waterway and approaching channel for safe navigation of vesse. The existing harbors have been being dredged to meet the international trend of jumbo sized vessels by adopting the new design criteria. As the dredged materials over the expected at the design level were common and there are still lack of land based reclamation area, we have no choice to discharge the dredged materials in open sea area. In this study, we analysed the behavior of discharged materials at the dumping area of offshore open sea, which were collected from the dredging work at the waterway in Busan New Port. We measured the tidal currents and analyzed the waters of dumping site after the dumping work. these were used to evaluate the numerical models. Suspended Solids(SS) were introduced to the diffusion model. Because of the characteristics of the dumping site, the speed of initial diffusion and settle down of the discharged materials was so fast. Therefore, we believe that the dumped materials do not cause a significant impact to the marine environment.

  • PDF

Assessment of Future Flood According to Climate Change, Rainfall Distribution and CN (기후변화와 강우분포 및 CN에 따른 미래 홍수량 평가)

  • Kwak, Jihye;Kim, Jihye;Jun, Sang Min;Hwang, Soonho;Lee, Sunghack;Lee, Jae Nam;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.85-95
    • /
    • 2020
  • According to the standard guidelines of design flood (MLTM, 2012; MOE, 2019), the design flood is calculated based on past precipitation. However, due to climate change, the frequency of extreme rainfall events is increasing. Therefore, it is necessary to analyze future floods' volume by using climate change scenarios. Meanwhile, the standard guideline was revised by MOE (Ministry of Environment) recently. MOE proposed modified Huff distribution and new CN (Curve Number) value of forest and paddy. The objective of this study was to analyze the change of flood volume by applying the modified Huff and newly proposed CN to the probabilistic precipitation based on SSP and RCP scenarios. The probabilistic rainfall under climate change was calculated through RCP 4.5/8.5 scenarios and SSP 245/585 scenarios. HEC-HMS (Hydrologic Engineering Center - Hydrologic Modeling System) was simulated for evaluating the flood volume. When RCP 4.5/8.5 scenario was changed to SSP 245/585 scenario, the average flood volume increased by 627 ㎥/s (15%) and 523 ㎥/s (13%), respectively. By the modified Huff distribution, the flood volume increased by 139 ㎥/s (3.76%) on a 200-yr frequency and 171 ㎥/s (4.05%) on a 500-yr frequency. The newly proposed CN made the future flood value increase by 9.5 ㎥/s (0.30%) on a 200-yr frequency and 8.5 ㎥/s (0.25%) on a 500-yr frequency. The selection of climate change scenario was the biggest factor that made the flood volume to transform. Also, the impact of change in Huff was larger than that of CN about 13-16 times.

Development of Evaluation Method for Environmental Friendly Property in National Highway (일반국도의 환경친화성 평가방법론 개발)

  • Jeon, Woo-Hoon;Lee, Young-Ihn
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.87-92
    • /
    • 2010
  • As the Concept "how environmental friendly" becomes more and more important in road construction. However, so far there is no estimation method. Environmental friendly concept can be incorporated at the plan level in order to influence decision making, and support policies that affect environment. The overall goal of this study was to develop environmental friendly concept measures for the national highway and to develop a methodology to implement a more environmental friendly concept. The research identified 8 performance measures through a project analysis that could address environmental impact assessment system's ten strategic goals - Topography, Wildlife, hydrology, landuse, air quality, water quality, soil, waste, noise, landscape. The qualitatively and quantitatively evaluation approach was selected as the decision support framework and performance measure were investigated using the AHP(Analytic Hierarchy Process) and pilot corridor for a 10 section and calculate the index values. The methodology was applied to a pilot corridor comprised of a 120km section of national highway in korea. The methodology made it possible to identify the specific performance measures that need improvement to enhance the overall environmental friendly concept. It is fairly intuitive, based on readily available data, and is easy to apply. It provides a powerful tool for government to assess the relative environmental friendly conceptof their transportation corridors now and in the future. It allows for comparisons within a corridor and with other corridors and identifies the improvements needed to enhance the environmental friendly concept.