• Title/Summary/Keyword: Water impact

Search Result 3,248, Processing Time 0.03 seconds

Analysis of Flow Velocity in the Channel according to the Type of Revetments Blocks Using 3D Numerical Model (3차원 수치모델을 활용한 호안 블록 형상에 따른 하도 내 유속 분석)

  • Dong Hyun Kim;Su-Hyun Yang;Sung Sik Joo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2023
  • Climate change affects the safety of river revetments, especially those associated with external flooding. Research on slope reinforcement has been actively conducted to enhance revetment safety. Recently, technologies for producing embankment blocks using recycled materials have been developed. However, it is essential to analyze the impact of block shapes on the flow characteristics of exclusion zones for revetment safety. Therefore, this study investigates the influence of revetment block shapes on the hydraulic characteristics of revetment surfaces through 3D numerical simulations. Three block shapes were proposed, and numerical analyses were performed by installing the blocks in an idealized river channel. FLOW-3D was used for the 3D numerical simulations, and the variations in maximum flow velocity, bed velocity beneath the revetment, and maximum shear stress were analyzed based on the shapes of the revetment blocks. The results indicate that for irregularly sized and spaced revetment blocks, such as the natural stone-type vegetation block (Block A), when connected to the revetment in an irregular manner, the changes in flow velocity in the revetment installation zone are more significant than those for Blocks B and C. It is anticipated that considering the topographical characteristics of rivers in the future will enable the design of revetment blocks with practical applicability in the field.

Long term groundwater quality change using electrical conductivity and nitrate in the Geum River Basin, South Korea (금강유역의 전기전도도와 질산염을 이용한 장기적인 지하수 수질변화)

  • Agossou, Amos;Lee, Jae-Beom;Joo, Sin-Young;Han, Yeon-Kyeong;Yang, Jeong-Seoke
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.2
    • /
    • pp.111-125
    • /
    • 2024
  • The study has examined alterations in groundwater quality by investigating the influence of rainfall on electrical conductivity (EC) and nitrate concentration in the groundwater of the Geum River Basin in South Korea. Mann Kendall and Sen's Slope estimator were employed to analyze the trends and estimate the trend's magnitude. The administrative map of the study area was utilized to assess the trends of these parameters within each administrative region. Seventeen years (from 2005 to 2021) of data on EC, groundwater levels (GWL), precipitation, and six years (from 2015 to 2020) of nitrate concentration data were utilized for this analysis. The results indicate that, in most administrative regions, there has been an increase in nitrate concentration, and EC, whereas precipitation has seen a slight decrease in a downstream and an increasing trend in upstream. The correlation coefficients calculated between these parameters reveal that there is no direct impact of precipitation on nitrate and EC, but a negative correlation was observed between GWL and EC. The most significant increasing trend in nitrate concentration was observed in two districts (Iksan and Gunsan ), which correspond to regions with significant agricultural activity; about 50% of these districts area are used for agricultural activities.

Efficacy of sucrose application in minimizing pain perception related to dental injection in children aged 3 to 9 years: a randomized control trial

  • Ishani Ratnaparkhi;Jasmin Winnier;Divya Shetty;Sanjana R. Kodical;Reema Manoj;Shilpa S Naik
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.2
    • /
    • pp.109-117
    • /
    • 2024
  • Background: Dental fear and anxiety are significant challenges in managing behavior in children. Oral administration of sucrose or sweet-tasting solutions has shown effectiveness in reducing procedural pain in infants and neonates. This study aimed to investigate whether pre-application of sucrose solution had an effect on minimizing pain perception during injection and to assess the potential impact of the child's age and sweet preference. Methods: A randomized control clinical trial was conducted on 60 children aged 3-9 years requiring buccal infiltration injections. Following parental consent, demographic data of the children were recorded. Sweet preferences was assessed using a modified forced-choice test. Children were equally and randomly allocated into study (sucrose) and control groups using a lottery method. Sucrose solution or distilled water, respectively, was applied to the lateral surface of the tongue for 2 min. Topical anesthetic was applied at the site of injection, followed by local anesthesia administration. The children rinsed their mouths thrice with water immediately after anesthetic injection. A video was recorded during injection which was then scored by three blinded examiners on the Sound Eye Motor (SEM) scale. The children also self-evaluated using Wong-Baker Faces Pain Rating Scale (WBFPS). Results: The mean SEM scores and WBFPS scores were analyzed using the Kruskall-Wallis test. The mean SEM score in the study group was 1.37 ± 0.61, compared to 3.17 ± 0.87 in the control group, showing a statistically significant difference (P < 0.001). Mean pain scores assessed by WBFPS in the study group were 0.60 ± 1.4, while in the control group, they were 6.27 ± 2.33, also showing a statistically significant difference (P < 0.001). Children with a sweet preference demonstrated a subjective reduction in pain perception. Conclusion: Application of sucrose before dental injections in children helps to minimize pain upon injection across all age groups.

Changes in Rice Growth Characteristics during Intermittent Drainage Period using Multiple Sensing Technology (다중 센싱 기반 중간물떼기 기간에 따른 벼 생육 특성 변화)

  • Woo-jin Im;Dong-won Kwon;Hyeok-jin Bak;Ji-hyeon Lee;Sungyul Chang;Wan-Gyu Sang;Nam-Jin Chung;Jung-il Cho;Woon-Ha Hwang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.2
    • /
    • pp.78-87
    • /
    • 2024
  • The risk of global warming is increasing due to rapid climate change and increased greenhouse gas (GHG) emissions. Among the greenhouse gases, methane has a strong warming effect; in particular, 51.2% of the agricultural sector's methane emissions are from flooded rice fields. According to the current standard rice cultivation method, rice is grown during the maximum tillering stage with an intermittent drainage period of approximately 2 weeks. During the flooding period, methane-producing bacteria are active, but the activity of methane-producing bacteria and the amount of methane gas produced are reduced when the soil becomes oxidized through watering. Accordingly, this study used multiple-sensing technology to analyze the growth response according to the intermittent drainage period and to identify the extended intermittent drainage period with less impact on rice production. The equipment used for growth observations included NDVI, PRI, and IR sensors. The results confirmed that growth indices related to stress, such as NDVI and PRI, were not significantly different from those of the control when treated within 3 weeks of drainage, but drastically decreased when the drainage period was extended beyond 4 weeks. These results appear to result from the fact that soil water content (volumetric water content) also dropped to below 20% 4 weeks after irrigation, creating actual drought stress conditions. The 22nd day after treatment, when the soil moisture content reached 20%, was considered the point in time when drought stress conditions were formed. The point at which the SPAD value decreased to 0.6% of normal was estimated to be 23.5 days after treatment by using the regression equation between NDVI and SPAD.

Environmental Changes after Timber Harvesting in (Mt.) Paekunsan (백운산(白雲山) 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收穫地)에서 벌출직후(伐出直後)의 환경변화(環境變化))

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.465-478
    • /
    • 1995
  • The objective of this study was to investigate the impacts of large-scale timber harvesting on the environment of a mature hardwood forest. To achieve the objective, the effects of harvesting on forest environmental factors were analyzed quantitatively using the field data measured in the study sites of Seoul National University Research Forests [(Mt.) Paekunsan] for two years(1993-1994) following timber harvesting. The field data include information on vegetation, soil mesofauna, physicochemical characteristics of soil, surface water runoff, water quality in the stream, and hillslope erosion. For comparison, field data for each environmental factor were collected in forest areas disturbed by logging and undisturbed, separately. The results of this study were as follows : The diversity of vegetational species increased in the harvested sites. However, the similarity index value of species between harvested and non-harvested sites was close to each other. Soil bulk density and soil hardness were increased after timber harvesting, respectively. The level of organic matter, total-N, avail $P_2O_5$, CEC($K^+$, $Na^+$, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$) in the harvested area were found decreased. While the population of Colembola spp., and Acari spp. among soil mesofauna in harvested sites increased by two to seven times compared to those of non-harvested sites during the first year, the rates of increment decreased in the second year. However, those members of soil mesofauna in harvested sites were still higher than those of non-harvested sites in the second year. The results of statistical analysis using the stepwise regression method indicated that the diversity of soil mesofauna were significantly affected by soil moisture, soil bulk density, $Mg^{{+}{+}}$, CEC, and soil temperature at soil depth of 5(0~10)cm in the order of importance. The amount of surface water runoff on harvested sites was larger than that of non-harvested sites by 28% in the first year and 24.5% in the second year after timber harvesting. The level of BOD, COD, and pH in the stream water on the harvested sites reached at the level of the domestic use for drinking in the first and second year after timber harvesting. Such heavy metals as Cd, Pb, Cu, and organic P were not found. Moreover, the level of eight factors of domestic use for drinking water designated by the Ministry of Health and Welfare of Korea were within the level of the first class in the quality of drinking water standard. The study also showed that the amount of hillslope erosion in harvested sites was 4.77 ton/ha/yr in the first year after timber harvesting. In the second year, the amount decreased rapidly to 1.0 ton/ha/yr. The impact of logging on hillslope erosion in the harvested sites was larger than that in non-harvested sites by seven times in the first year and two times in the second year. The above results indicate that the large-scale timber harvesting cause significant changes in the environmental factors. However, the results are based on only two-year field observation. We should take more field observation and analyses to increase understandings on the impacts of timber harvesting on environmental changes. With the understandings, we might be able to improve the technology of timber harvesting operations to reduce the environmental impacts of large-scale timber harvesting.

  • PDF

Climate Change Impact on Nonpoint Source Pollution in a Rural Small Watershed (기후변화에 따른 농촌 소유역에서의 비점오염 영향 분석)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.209-221
    • /
    • 2006
  • The purpose of this study is to analyze the effects of climate change on the nonpoint source pollution in a small watershed using a mid-range model. The study area is a basin in a rural area that covers 384 ha with a composition of 50% forest and 19% paddy. The hydrologic and water quality data were monitored from 1996 to 2004, and the feasibility of the GWLF (Generalized Watershed Loading function) model was examined in the agricultural small watershed using the data obtained from the study area. As one of the studies on climate change, KEI (Korea Environment Institute) has presented the monthly variation ratio of rainfall in Korea based on the climate change scenario for rainfall and temperature. These values and observed daily rainfall data of forty-one years from 1964 to 2004 in Suwon were used to generate daily weather data using the stochastic weather generator model (WGEN). Stream runoff was calibrated by the data of $1996{\sim}1999$ and was verified in $2002{\sim}2004$. The results were determination coeff, ($R^2$) of $0.70{\sim}0.91$ and root mean square error (RMSE) of $2.11{\sim}5.71$. Water quality simulation for SS, TN and TP showed $R^2$ values of 0.58, 0.47 and 0.62, respectively, The results for the impact of climate change on nonpoint source pollution show that if the factors of watershed are maintained as in the present circumstances, pollutant TN loads and TP would be expected to increase remarkably for the rainy season in the next fifty years.

Analysis of National Stream Drying Phenomena using DrySAT-WFT Model: Focusing on Inflow of Dam and Weir Watersheds in 5 River Basins (DrySAT-WFT 모형을 활용한 전국 하천건천화 분석: 전국 5대강 댐·보 유역의 유입량을 중심으로)

  • LEE, Yong-Gwan;JUNG, Chung-Gil;KIM, Won-Jin;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.2
    • /
    • pp.53-69
    • /
    • 2020
  • The increase of the impermeable area due to industrialization and urban development distorts the hydrological circulation system and cause serious stream drying phenomena. In order to manage this, it is necessary to develop a technology for impact assessment of stream drying phenomena, which enables quantitative evaluation and prediction. In this study, the cause of streamflow reduction was assessed for dam and weir watersheds in the five major river basins of South Korea by using distributed hydrological model DrySAT-WFT (Drying Stream Assessment Tool and Water Flow Tracking) and GIS time series data. For the modeling, the 5 influencing factors of stream drying phenomena (soil erosion, forest growth, road-river disconnection, groundwater use, urban development) were selected and prepared as GIS-based time series spatial data from 1976 to 2015. The DrySAT-WFT was calibrated and validated from 2005 to 2015 at 8 multipurpose dam watershed (Chungju, Soyang, Andong, Imha, Hapcheon, Seomjin river, Juam, and Yongdam) and 4 gauging stations (Osucheon, Mihocheon, Maruek, and Chogang) respectively. The calibration results showed that the coefficient of determination (R2) was 0.76 in average (0.66 to 0.84) and the Nash-Sutcliffe model efficiency was 0.62 in average (0.52 to 0.72). Based on the 2010s (2006~2015) weather condition for the whole period, the streamflow impact was estimated by applying GIS data for each decade (1980s: 1976~1985, 1990s: 1986~1995, 2000s: 1996~2005, 2010s: 2006~2015). The results showed that the 2010s averaged-wet streamflow (Q95) showed decrease of 4.1~6.3%, the 2010s averaged-normal streamflow (Q185) showed decreased of 6.7~9.1% and the 2010s averaged-drought streamflow (Q355) showed decrease of 8.4~10.4% compared to 1980s streamflows respectively on the whole. During 1975~2015, the increase of groundwater use covered 40.5% contribution and the next was forest growth with 29.0% contribution among the 5 influencing factors.

The Characteristics of NOx Formation in Stainless Mixed Acid Pickling Process and The Effect of Hydrogen Peroxide Addition on NOx Formation (스테인레스 혼산 산세 공정에서 NOx 생성 특성과 과산화수소첨가에 따른 영향)

  • Yoon, Jeyong;Yie, Jaeeui;Lee, Sujin;Lee, Younghwan;Huh, Jin;Park, Sungkook;Chun, Heedong
    • Clean Technology
    • /
    • v.2 no.1
    • /
    • pp.96-108
    • /
    • 1996
  • $NO_x$ is mainly emitted from mixed acid pickling process in the stainless industry and its impact to the environment has been worried over. This study which may be considered as one of the development of clean technologies, differing from the traditional end pipe technology is about how to reduce $NO_x$ emission through the modification of corresponding process. This study consists of two parts. First, the influence of various reaction parameters in a acid pickling process on $NO_x$ emission was investigated. Second, the influence of hydrogen peroxide on $NO_x$ formation, which is known as inhibitor of $NO_x$ emission, was investigated. Major findings in this study are as follows. The important reaction parameters which have a great influence on $NO_x$ emission are the reaction temperature and the concentration of fluoric acid. The concentration of nitric acid, some of which results in $NO_x$ compound is not as important as the concentration of fluoric acid. Synthetic mixed acid of nitric acid and fluoric acid itself in absent of pickling plate contributed the $NO_x$ emission, however, its impact was negligible in terms of quantity. The addition of hydrogen peroxide to the acid pickling process significantly contributed to the reduction of $NO_x$ emission and successfully achieved 80% reduction of $NO_x$ emission at the condition of $9.51{\times}10^{-2}mole\;hydrogen\;peroxide/m^2$ pickling area. This result was compared to literature value from Avesta steel process, indicating a sixth of hydrogen peroxide addition of Avesta's in achieving a same amount of $NO_x$ reduction. The region of the economic hydrogen peroxide addition per unit area of plate to be pickled from the result of this study was established.

  • PDF

Analysis of Hydrological Impact Using Climate Change Scenarios and the CA-Markov Technique on Soyanggang-dam Watershed (CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석)

  • Lim, Hyuk-Jin;Kwon, Hyung-Joong;Bae, Deg-Hyo;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.5 s.166
    • /
    • pp.453-466
    • /
    • 2006
  • The objective of this study was to analyze the changes in the hydrological environment in Soyanggang-dam watershed due to climate change results (in yews 2050 and 2100) which were simulated using CCCma CGCM2 based on SRES A2 and B2. The SRES A2 and B2 were used to estimate NDVI values for selected land use using the relation of NDVI-Temperature using linear regression of observed data (in years 1998$\sim$2002). Land use change based on SRES A2 and B2 was estimated every 5- and 10-year period using the CA-Markov technique based on the 1985, 1990, 1995 and 2000 land cover map classified by Landsat TM satellite images. As a result, the trend in land use change in each land class was reflected. When land use changes in years 2050 and 2100 were simulated using the CA-Markov method, the forest class area declined while the urban, bareground and grassland classes increased. When simulation was done further for future scenarios, the transition change converged and no increasing trend was reflected. The impact assessment of evapotranspiration was conducted by comparing the observed data with the computed results based on three cases supposition scenarios of meteorological data (temperature, global radiation and wind speed) using the FAO Penman-Monteith method. The results showed that the runoff was reduced by about 50% compared with the present hydrologic condition when each SRES and periods were compared. If there was no land use change, the runoff would decline further to about 3$\sim$5%.

Field Assessment of in Situ Remediation of NO3--contaminated Ground Water Using Zero-valent Iron/Bio Composite Media (영가철/바이오 복합처리제를 이용한 질산성 질소 오염 지하수의 현장 지중정화 적용성 평가)

  • Joo, Wan-Ho;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2021
  • In this study, the assessment of field applicability of in-situ remediation of nitrate-contaminated groundwater located in Yesan-gun was performed. Zero-valent iron/bio composite media injected PRB (Permeable Reactive Barrier) and monitoring well were installed in the contaminated groundwater site and monitored main remediation indicators during the PRB operation. Nitrate, nitrite, ammonia, Fe ion, TOC, and turbidity were analyzed and the diversity and population of microorganism in the PRB installed site were investigated for the verification of effect of injected PRB. In the study site where is an agricultural area, a river flows from west to east that forms a river boundary and the southern area has an impermeable sector. It was found that nitrate flows into the river, which is similar as groundwater flow. Simulation result for the fate of nitrate in groundwater showed steady state of nitrate arrived after 3~5 years passed. However, it is just to consider current conditions with no additional input of contaminant source, if additional input of contaminant source occurs contamination dispersion and time for steady state are expected to be increased. The monitoring results showed that Fe ion, TOC and turbidity in groundwater were not clearly changed in concentration after PRB installation, which indicates adaptability of the injected PRB for remediation of groundwater with no additional harmful effect to water quality. The concentration of nitrate maintained less than 5mg/L until 42 days after PRB installation and recovered its initial concentration after 84 days passed and showed termination of reactivity of injected zero-valent iron/bio composite media for removal nitrate. Nitrite and ammonia ions found after installation of PRB indicates reductive removal of nitrate. And the outstanding increase of microorganism diversity and population of Betaproteobacteria Class which includes denitrification microorganism explains biologically reductive removal of nitrate in injected PRB.