• 제목/요약/키워드: Water exchange

검색결과 1,496건 처리시간 0.038초

Decomposition of PVC and Ion exchange resin in supercritical water

  • Lee, Sang-Hwan;Yasuyo, Hosgujawa;Kim, Jung-Sung;Park, Yoon-Yul;Hiroshi, Tomiyasu
    • 한국환경과학회:학술대회논문집
    • /
    • 한국환경과학회 2005년도 봄 학술발표회지 제14권(제1호)
    • /
    • pp.267-271
    • /
    • 2005
  • This experiment was carried out at 450"C, which is relatively lower than the temperature for supercritical water oxidation (600-650$^{\circ}C$). In this experiment, the decomposition rates of various incombustible organic substances were very high. In addition, it was confirmed that hetero atoms existed in organic compounds and chlorine was neutralized by sodium(salt formation).However, to raise the decomposition rate, relatively large amount of sodium nitrate(3-4 times the equivalent weight) was required. When complete oxidation is intended as in the case with PCB, the amount of oxidizer and decomposition cost is important. But when vaporization reduction is required as in the case with nuclear wastes, the amount of radioactive wastes increases instead. But as can be seen in the result of XRD measurement, unreacted sodium nitrate remained unchanged. If oxidation reaction of organic substance simply depends on collision frequency, unreacted sodium nitrate can be recovered and reused, then oxidation equivalent weight would be sufficient. In the gas generated, toxic gas was not found. As the supercritical water medium has high reactivity, it is difficult to generate relatively low energy level SO$_{X}$, and NO$_{X}$.

  • PDF

잠재 평판 주변에서 발생하는 순환류에 대한 실험적 연구 (An Experimental Study on Circulating Flow Around a Submerged Horizontal Plate)

  • 이정렬;한상우
    • 한국해안해양공학회지
    • /
    • 제13권2호
    • /
    • pp.109-121
    • /
    • 2001
  • 잠재된 평판 방파제가 해수 교환에 미치는 영향을 실험적으로 조사하였고 그 결과를 제시한다. 흐름은 PIV 시스템으로 관측되었으며 조화분석으로부터 분리된 평균 흐름과 파랑 타원이 각각 제시된다. 실험결과, 순환유량은 입사파의 체적플럭스와 밀접한 관계가 있으며 쌍와류가 평판 후면에서 관측되었다. 염료추적에 의하면 평판위에서 발생된 제트류로 인한 난류의 영향으로 유입되는 해수와 항내 오염물질이 상당히 잘 섞이고 있음을 보여주고 있다.

  • PDF

Comparative Study on the Organic Solvent of IrO2-Ionomer Inks used for Spray Coating of Anode for Proton Exchange Membrane Water Electrolysis

  • Hye Young Jung;Yongseok Jun;Kwan-Young Lee;Hyun S. Park;Sung Ki Cho;Jong Hyun Jang
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.283-292
    • /
    • 2023
  • Currently, spray coating has attracted interest in the mass production of anode catalyst layers for proton exchange membrane water electrolysis (PEMWE). The solvent in the spray ink is a critical factor for the catalyst dispersion in ink, the microstructure of the catalyst layer, and the PEMWE performance. Herein, various pure organic solvents were examined as a substitute for conventional isopropanol-deionized water (IPA-DIW) mixture for ink solvent. Among the polar solvents that exhibited better IrO2 dispersion over nonpolar solvents, 2-butanol (2-BuOH) was selected as a suitable candidate. The PEMWE single cells were fabricated using 2-BuOH at various ionomer contents, spray nozzle types, and drying temperatures, and their performance was compared to the cells fabricated using a conventional IPA-DIW mixture. The PEMWE single cells with 2-BuOH solvent showed good performances comparable to the conventional IPA-DIW mixture case and highly durable performances under accelerated degradation tests.

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

냉방설비 성능개선 및 에너지 절약을 위한 응결수 활용성 분석 (An analysis on the utility of congealing water to improve efficiency of the air cooling equipment and save energy)

  • 박근수;박영호;유정범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.974-981
    • /
    • 2007
  • Seoul Metro has operated the air cooling equipment established in a machine room of a station building to improve our services focused on our customers who use Seoul Metro during the summer season. However, a new set of problems has arisen with the cooling tower to support a heat exchange of cooling water. One of them is loss of efficiency in the air conditioner. The leading cause of this problem is that we use an underground type of the cooling tower. As the machine room of a station building is located in the underground of inner city because of the nature of the subway, it is difficult to establish the cooling tower on the ground. The underground structure of the No. $1{\sim}4$ subway line is unsuitable for the location requirements of the underground type of the one because it has a limited space to set up the air cooling equipment, for example, the cooling tower and a ventilating opening. As a result of such an unfavorable condition, the cooling tower doesn't work efficiently and the warmth of cooling water because of insufficiency of a heat exchange and a refrigerator's technical obstacle such as a high-temperature and a high-pressure has arisen. Accordingly, the efficiency of the air conditioning is getting lower and lower. Another problem is too wasteful with water. Each station uses the water over 30 tons every day with waterworks to replenish the cooling tower such as a evaporation, a scattering and a distribution of water. Nevertheless, the more an air conditioner increase, the more the use of water supply increase. For this reason, we can't help wasting an enormous amount of water and discharging the congelation of a low temperature(about $15^{\circ}C$) occurred in a heat exchanger inside an air conditioner. The purpose of this study is to analyze the utility of congealing water to improve efficiency of the air cooling equipment and save energy as a supplementary water for the cooling tower.

  • PDF

제오라이트 광물(鑛物) (Natural Zeolities)

  • 상기남
    • 자원환경지질
    • /
    • 제9권3호
    • /
    • pp.165-168
    • /
    • 1976
  • Zeolites are aluminosilicates with a three dimensional framework structure enclosing pores occupied by cation and water molecules, both of which have considerable freedom of movement within certain limits. The ability of zeolites to exchange cation is one of the mere useful of their characteristics. The ion exchange condition of zeolites strongly affects absorption as well as other properties. The application, techniques of identification and evaluation of clinoptilolite, chabazite, mordenite and phillipsite are reviewed.

  • PDF

한국형 생태산업단지 구축 및 자원화 순환망 구축에 관한 연구 (A study for the design of EIP and by-product exchange network)

  • 임창호;이동석
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.95-100
    • /
    • 2009
  • Recently, SID (Sustainable Industrial Development) or green growth is the major concern of industries. EIP (Eco Industrial Park) is one of the important part of SID which aims to improve eco-efficiency of resources such as material, energy and water. In this study, current status of Banwol & Sihwa industrial complex relating EIP was investigated and the plan to design of Banwol & Sihwa EIP was suggested.

  • PDF

Physical Modeling of Chemical Exchange Saturation Transfer Imaging

  • Jahng, Geon-Ho;Oh, Jang-Hoon
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.135-143
    • /
    • 2017
  • Chemical Exchange Saturation Transfer (CEST) imaging is a method to detect solutes based on the chemical exchange of mobile protons with water. The solute protons exchange with three different patterns, which are fast, slow, and intermediate rates. The CEST contrast can be obtained from the exchangeable protons, which are hydroxyl protons, amine protons, and amide protons. The CEST MR imaging is useful to evaluate tumors, strokes, and other diseases. The purpose of this study is to review the mathematical model for CEST imaging and for measurement of the chemical exchange rate, and to measure the chemical exchange rate using a 3T MRI system on several amino acids. We reviewed the mathematical models for the proton exchange. Several physical models are proposed to demonstrate a two-pool, three-pool, and four-pool models. The CEST signals are also evaluated by taking account of the exchange rate, pH and the saturation efficiency. Although researchers have used most commonly in the calculation of CEST asymmetry, a quantitative analysis is also developed by using Lorentzian fitting. The chemical exchange rate was measured in the phantoms made of asparagine (Asn), glutamate (Glu), ${\gamma}-aminobutyric$ acid (GABA), glycine (Gly), and myoinositol (MI). The experiment was performed at a 3T human MRI system with three different acidity conditions (pH 5.6, 6.2, and 7.4) at a concentration of 50 mM. To identify the chemical exchange rate, the "lsqcurvefit" built-in function in MATLAB was used to fit the pseudo-first exchange rate model. The pseudo-first exchange rate of Asn and Gly was increased with decreasing acidity. In the case of GABA, the largest result was observed at pH 6.2. For Glu, the results at pH 5.6 and 6.2 did not show a significant difference, and the results at pH 7.4 were almost zero. For MI, there was no significant difference at pH 5.6 or 7.4, however, the results at pH 6.2 were smaller than at the other pH values. For the experiment at 3T, we were only able to apply 1 s as the maximum saturation duration due to the limitations of the MRI system. The measurement of the chemical exchange rate was limited in a clinical 3T MRI system because of a hardware limitation.

Enhancement of Hydroxylamine Reactivity of Bacteriorhodopsin at High Temperature

  • Sonoyama, Masashi;Mitaku, Shigeki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.299-301
    • /
    • 2002
  • Recent denaturation experiments of bacteriorhodopsin (bR) in the dark and under illumination at high temperatures revealed that irreversible thermal bleaching occurs above ~ 70°C and the preceding reversible structural changes in the dark above 60°C are closely related to irreversible photobleaching observed in the same temperature range (Yokoyama et al. (2002). J Biochem. 131,785). In this study, structural properties of bacteriorhodopsin (bR) at high temperatures were extensively probed by hydroxylamine reactivity with the Schiff base in the dark and hydrogen-deuterium (H-D) exchange in the peptide groups. In the Arrhenius plot from kinetics measurements of the hydroxylamine reaction, a good linear relationship between the reaction time constant and the inverse of the absolute temperature was observed below 60°C, while significant increase started above 60°C, suggesting that remarkable increase in water accessibility of the Schiff base in the temperature region. FT-IR spectroscopic studies on the H-D exchange suggested increase in the deuterium exchanges rate of the peptide hydrogen in the same temperature region.

  • PDF

고온-저습용 연료전지를 위한 SPAES/Silicate 복합막 (SPAES/Silicate Hybrid Membranes for High-Temperature and Low-Humidity Proton Exchange Membrane Fuel Cells)

  • 소순용;김태호;김성철;홍영택
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.147-147
    • /
    • 2010
  • An electrolyte membranes for high temperature/low humidity is a demand for the proton exchange membrane fuel cells (PEMFCs). In this work, we prepared hybrid membranes, which have novel glass content in the hydrophilic and hydrophobic part of sulfonated poly(arylene ether sulfone) (SPAES) by in-situ sol-gel synthesis of various functional silane. The effect of silicate from functional silane content on the proton conductivity, water uptake of the hybrid membranes under high temperature and low humidity was quantitatively identified. The silicate content contributed to the enhancement of not only proton conductivity, but also water retention ability for PEMFCs operation.

  • PDF