• Title/Summary/Keyword: Water district

Search Result 597, Processing Time 0.03 seconds

Analysis of Irrigation Water Use from Pumping Station (양수장 지구를 대상으로 한 농업용수 이용특성 분석(관개배수 \circled2))

  • 박기욱;정하우;석대식
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.169-174
    • /
    • 2000
  • The analysis of irrigation water use characteristics from a pumping station is implemented. Sangjoo district was selected as a test area. Irrigation water are varied according to manners of water manager, weather change and irrigation system changes such as the repair and improvement of irrigation canal, installation of an auxiliary water sources and canal structure. From the results, average irrigation water is 1,136mm during irrigation period from 1987 to 1997 in sanjoo district. After improvement of irrigation district, irrigation water was increased 45% as average water use in this area.

  • PDF

A Development of the Guideline for the Heating Water Quality in Apartment Houses with District Heating System (공동주택 지역난방 수질기준 설정에 관한 연구)

  • Kim, Yong-Ki;Lee, Tae-Won;Woo, Dal-Sik;Oh, June;Ahn, Chang-Koo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.493-498
    • /
    • 2008
  • Particles or deposit formed by corrosion of the pipe material bring about bad influences on the heating systems with inconvenience, energy loss and so on. In order to obtain the non-corrosive environments, the circulation hot water should properly be treated in several ways to satisfy one or more conditions of the followings: suitable pH-level, low hardness, low oxygen content, low conductivity, low level of chlorides and sulphur compounds and low level of solid particles. This experimental study was carried out to develope the new guidelines on the optimal water quality and directions for water quality management in heating systems. As results, it was recommended that the heating water be maintained pH-level not less than 8, hardness contents as $CaCO_3$ no more than 50 mg/L, turbidity no more than 10 NTU and T-Fe contents 1 mg/L below.

  • PDF

Estimation of Optimal Diversion Water from Keumgang Lake for Supplying Dilution Water to Saemangeum Lake (새만금호 희석용수 공급을 위한 금강호에서의 적정 도수량 산정)

  • Lee, Duk-Joo;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.243-246
    • /
    • 2003
  • The connection channel for Saemangeum district is to link the lakes between Keumkang Lake and Saemangeum Lake and to dilute the polluted water flowing from Mankyung river, to accelerate desalinization in Saemangeum lake, and to satisfy the future demand of water around Saemangeum district. Therefore, this study is to investigate the surplus water in Keumgang Lake after supplying the current agricutural, life, and industrial water and to check the possibility to divert the surplus water to Saemangeum Lake

  • PDF

Performance Characteristics of Organic Rankine Cycles Using Medium Temperature District Heating Water as Heat Source (지역난방용 중온수 열원 유기랭킨사이클 성능 특성)

  • Park, Woo-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.1
    • /
    • pp.29-36
    • /
    • 2016
  • It is becoming increasingly important to make use of alternative energy source. because It is not able to rely on only fossil fuel for the recent increasing demand of energy consumption. With this situation, lots of studies for utilizing low grade energy such as industrial waste heat, solar energy, and geothermal energy have been conducted. The aim of this study is to predict the operation characteristics of working fluid by using performance analysis program (ThermoFlex) through the system analysis which is not mixing district return water but using ORC(Organic Rankine Cycle, hereinafter ORC) as a downstream cycle when accumulating district heating (hereinafter DH). In this study, We conducted the performance analysis for the case which has the district heating water temperature($120^{\circ}C$) and Flow rate of $163m^3/h$ (including District Heating return water flow), and examined several working fluid which is proper to this temperature. The case using R245fa (which is the best-case) showed 269.2kW power output, 6.37% efficiency. Additionally, Cut down on fuel was expected because of the boiler inlet temperature increase by being Formed $57.3{\sim}85^{\circ}C$ in a temperature of district heating return water, depending on a pressure change of a condenser in ORC system.

  • PDF

Analysis of Irrigation Efficiency and Pattern in Galshin Pumping District (갈신양수장 관개지구의 관개효율과 관개패턴분석)

  • Ryu, Bumhee;Park, Seungki
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.3
    • /
    • pp.91-102
    • /
    • 2020
  • The purpose of study was analyze the pumping characteristics, Irrigation Efficiency(IE), and irrigation pattern by period of rice growing stage with based on the performance of design irrigation water requirement and operational Galshin Pumping(GP) station in GP irrigation district constructed under rural water development project master plan. GP station was located in Yedang reservoir, Yesan-gun, Chungcheongnam-do and has been supplying irrigation water since 2006. The research data are the Irrigation Water Requirement(IWR) and the Pumping Water Amount(PWA) from 2006 to 2015 at the GP station, which is the supplied amount. The IWR were calculated using the Blaney-Criddle formula of the HOMWRS program, Hydrological Operation Model for Water Resource System, developed by Korea Rural Community Corporation. The Blaney-Criddle formula was used to calculate design irrigation water requirement of Galshin rural water development project master plan. During 2006-2015, the study period, the annual average IWR is 763.2(±149.1)mm, the annual PWA of the GP station is 397.4mm to 1,056.9mm, and those average annual PWA is 643.4(±208.4)mm. The annual IE of GP station 96.5% to 169.0%, and the average annual IE is 124.3%, which is higher than the research results conducted in other pumping stations. Analyzing the irrigation patterns of the GP irrigation district, the IWR Ratio per 10days(IWRR) and the PWA Ratio per 10days(PWAR) of the G P station were obtained. The IWRR is the percentage of IWR for each 10 days of a month to total IWR per year, and the PWAR is the percentage of PWA for each 10 days of a month to total PWA per year. The Kolmogorov- Smirnov(K-S) test results of IWRR and PWAR showed the characteristics classification by rice growing stage and stable normal distribution characteristics. Average IWRR(AIWRR) and Average PWAR(APWAR) are presented as irrigation patterns. Irrigation pattern analysis will be able to standardize comparison, analysis and probability calculation of the pumping station characteristics of different pumping stations and apply to objective evaluation of the pumping station district.

Dynamic Configuration and Operation of District Metered Areas in Water Distribution Networks

  • Bui, Xuan-Khoa;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.147-147
    • /
    • 2021
  • A partition of water distribution network (WDN) into district metered areas (DMAs) brings the efficiency and efficacy for water network operation and management (O&M), especially in monitoring pressure and leakage. Traditionally, the DMA configurations (i.e., number, shape, and size of DMAs) are permanent and cannot be changed occasionally. This leads to changes in water quality and reduced network redundancy lowering network resilience against abnormal conditions such as water demand variability and mechanical failures. This study proposes a framework to automatically divide a WDN into dynamic DMA configurations, in which the DMA layouts can self-adapt in response to abnormal scenarios. To that aim, a complex graph theory is adopted to sectorize a WDN into multiscale DMA layouts. Then, different failure-based scenarios are investigated on the existing DMA layouts. Here, an optimization-based model is proposed to convert existing DMA layouts into dynamic layouts by considering existing valves and possibly placing new valves. The objective is to minimize the alteration of flow paths (i.e., flow direction and velocity in the pipes) while preserving the hydraulic performance of the network. The proposed method is tested on a real complex WDN for demonstration and validation of the approach.

  • PDF

Failure Analysis of Welded type 304 in Cooling Water Pipeline of District Heating System (지역난방 냉각수 배관의 용접부 파손 분석)

  • Jeong, Joon-Cheol;Kim, Woo-Cheol;Kim, Kyung Min;Sohn, Hong-Kyun;Kim, Jung-Gu;Lee, Soo-Yeol;Kim, Heesan
    • Corrosion Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.296-301
    • /
    • 2020
  • Failure analysis on the welded type 304 pipe used for cooling water piping in the district heating primary side was conducted. Inorganic elements and bacteria in the cooling water and in corrosion products were analyzed, and the weldment was inspected by microscopy and a sensitization test. Corrosion damages were observed in the heat-affected zone, on weld defects such as incomplete fusion or excessive penetration caused by improper welding, or/and at the 6 o'clock position along the pipe axial direction. However, the level of concentration of chloride in the cooling water as low as 80 ppm has been reported to be not enough for even a sensitized type 304 steel, meaning that the additional corrosive factor was required for these corrosion damages. The factor leading to these corrosion damages was drawn to be the metabolisms of the types of bacteria, which is proved by the detection of proton, sulfur containing species, biofilms, and both bacteria and corrosion product analyses.

Study on the Methodology for Generating Future Precipitation Data by the Rural Water District Using Grid-Based National Standard Scenario (격자단위 국가 표준 시나리오를 적용한 농촌용수구역단위 자료변환 방법 비교 연구)

  • Kim, Siho;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.69-82
    • /
    • 2023
  • Representative meteorological data of the rural water district, which is the spatial unit of the study, was produced using the grid-based national standard RCP scenario rainfall data provided by the Korea Meteorological Administration. The retrospective reproducibility of the climate model scenario data was analyzed, and the change in climate characteristics in the water district unit for the future period was presented. Finally the data characteristics and differences of each meteorological element according to various spatial resolution conversion and post-processing methods were examined. As a main result, overall, the distribution of average precipitation and R95p of the grid data, has reasonable reproducibility compared to the ASOS observation, but the maximum daily rainfall tends to be distributed low nationwide. The number of rainfall days tends to be higher than the station-based observation, and this is because the grid data is generally calculated using the area average concept of representative rainfall data for each grid. In addition, in the case of coastal regions, there is a problem that administrative districts of islands and rural water districts do not match. and In the case of water districts that include mountainous areas, such as Jeju, there was a large difference in the results depending on whether or not high rainfall in the mountainous areas was reflected. The results of this study are expected to be used as foundation for selecting data processing methods when constructing future meteorological data for rural water districts for future agricutural water management plans and climate change vulnerability assessments.

A District Cooling System using Ice Slurry for the Uncertain Cooling Load of the Future (미래의 불확실한 냉방부하에 대한 아이스슬러리를 이용한 지역냉방시스템)

  • Lee, Yoon-Pyo;Ahn, Young-Hwan;Yoon, Seok-Mann
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.233-238
    • /
    • 2006
  • A new district cooling system using ice slurry for the uncertain cooling load of the future is presented. The chilled water produced by the absorption chillers is used for the base cooling load. The temperature of the chilled water is reduced by mixing of ice slurry depending on increasing of the cooling load. Finally, IPF of the ice slurry is increased up to 10% at the peak load. The transporting mass flow rate is decreased down to 44.7%, and the diameter of the main pipe is decreased down to 66.7%, but the diameter of the branched pipe is designed as the same size of the chilled water.

  • PDF

Concrete properties prediction based on database

  • Chen, Bin;Mao, Qian;Gao, Jingquan;Hu, Zhaoyuan
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.343-356
    • /
    • 2015
  • 1078 sets of mixtures in total that include fly ash, slag, and/or silica fume have been collected for prediction on concrete properties. A new database platform (Compos) has been developed, by which the stepwise multiple linear regression (SMLR) and BP artificial neural networks (BP ANNs) programs have been applied respectively to identify correlations between the concrete properties (strength, workability, and durability) and the dosage and/or quality of raw materials'. The results showed obvious nonlinear relations so that forecasting by using nonlinear method has clearly higher accuracy than using linear method. The forecasting accuracy rises along with the increasing of age and the prediction on cubic compressive strength have the best results, because the minimum average relative error (MARE) for 60-day cubic compressive strength was less than 8%. The precision for forecasting of concrete workability takes the second place in which the MARE is less than 15%. Forecasting on concrete durability has the lowest accuracy as its MARE has even reached 30%. These conclusions have been certified in a ready-mixed concrete plant that the synthesized MARE of 7-day/28-day strength and initial slump is less than 8%. The parameters of BP ANNs and its conformation have been discussed as well in this study.