• Title/Summary/Keyword: Water distribution system (WDS)

Search Result 16, Processing Time 0.023 seconds

Determination of a priority for leakage restoration considering the scale of damage in for water distribution systems (피해규모를 고려한 용수공급시스템 누수복구 우선순위 선정)

  • Kim, Ryul;Kwon, Hui Geun;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.679-690
    • /
    • 2023
  • Leakage is one of the representative abnormal conditions in Water distribution systems (WDSs). Leakage can potentially occur and cause immediate economic and hydraulic damage upon occurrence. Therefore, leakage detection is essential, but WDSs are located underground, it is difficult. Moreover, when multiple leakage occurs, it is required to prioritize restoration according to the scale and location of the leakage, applying for an optimal restoration framework can be advantageous in terms of system resilience. In this study, various leakage scenarios were generated based on the WDSs hydraulic model, and leakage detection was carried out containing location and scale using a Deep learning-based model. Finally, the leakage location and scale obtained from the detection results were used as a factor for the priority of leakage restoration, and the results of the priority of leakage restoration were derived. The priority of leakage restoration considered not only hydraulic factors but also socio-economic factors (e.g., leakage scale, important facilities).

Optimal Design of Water Distribution System considering the Uncertainties on the Demands and Roughness Coefficients (수요와 조도계수의 불확실성을 고려한 상수도관망의 최적설계)

  • Jung, Dong-Hwi;Chung, Gun-Hui;Kim, Joong-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.73-80
    • /
    • 2010
  • The optimal design of water distribution system have started with the least cost design of single objective function using fixed hydraulic variables, eg. fixed water demand and pipe roughness. However, more adequate design is accomplished with considering uncertainties laid on water distribution system such as uncertain future water demands, resulting in successful estimation of real network's behaviors. So, many researchers have suggested a variety of approaches to consider uncertainties in water distribution system using uncertainties quantification methods and the optimal design of multi-objective function is also studied. This paper suggests the new approach of a multi-objective optimization seeking the minimum cost and maximum robustness of the network based on two uncertain variables, nodal demands and pipe roughness uncertainties. Total design procedure consists of two folds: least cost design and final optimal design under uncertainties. The uncertainties of demands and roughness are considered with Latin Hypercube sampling technique with beta probability density functions and multi-objective genetic algorithms (MOGA) is used for the optimization process. The suggested approach is tested in a case study of real network named the New York Tunnels and the applicability of new approach is checked. As the computation time passes, we can check that initial populations, one solution of solutions of multi-objective genetic algorithm, spread to lower right section on the solution space and yield Pareto Optimum solutions building Pareto Front.

Re-chlorination facility design to cope with virus intrusion in water distribution system (상수도 관망 내 바이러스 유입 대응을 위한 재염소 시설 설계)

  • Kim, Beomjin;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.277-287
    • /
    • 2024
  • Water distribution system (WDS) is exposed to various water quality incidents during its operation. This study utilized Quantitative Microbial Risk Assessment (QMRA) to analyze the risk associated with potential virus intrusion in WDSs. Additionally, the study determined the location and operation of rechlorination facilities to minimize potential risk. In addition, water quality resilience was calculated to confirm that the chlorine concentration maintains within the target range (0.1-1.0 mg/L) during normal operation. Hydraulic analysis was performed using EPANET, while EPANET-MSX was linked to simulate the reactions between viruses and chlorine. The proposed methodology was applied to the Bellingham network in the United States, where rechlorination facilities capable of injecting chlorine concentrations ranging from 0.5 mg/L to 1.0 mg/L were considered. Results indicated that without rechlorination facilities, the Average risk was 0.0154. However, installing rechlorination facilities and injecting chlorine at a concentration of 1.0 mg/L could reduce the Average risk to 39.1%. It was observed that excessive chlorine injection through rechlorination facilities reduced water quality resilience. Consequently, a rechlorination facility with a concentration of 0.5 mg/L was selected, resulting in a reduction of approximately 20% in average risk. This study provides insights for designing rechlorination facilities to enhance preparedness against potential virus ingress in the future.

Optimization of Booster Disinfection Scheduling in Water Distribution Systems using Artificial Neural Networks (인공신경망을 이용한 상수관망 염소 재투입 스케줄링 최적화)

  • Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.18-18
    • /
    • 2018
  • 상수관망 시스템(Water Distribution System, WDS)은 이용자에게 양질의 상수도를 공급하기 위해 구축된 사회기반시설물로써, 정수된 물이 사용처에 도달하기까지 송수과정에서 발생 가능한 수질저하를 고려해야 한다. 일반적으로 정수장에서 염소처리를 한 후, 도달시간을 고려한 시스템 내 잔류 염소농도를 유지함으로써 수질저하를 예방한다. 여기서 상수도 내 잔류 염소농도는 미생물 번식 및 관내 부식물 등 다양한 생물 화학적 오염을 효과적으로 예방하는 반면, 과다할 경우 이용자의 음용성을 저해할 수 있어 시스템 전반에 걸쳐 염소농도의 적절한 관리가 요구된다. 특히, 상수관망에서는 공급경로 및 공급량에 따라 각 수요처의 도달 염소농도가 다르게 분포할 수 있으므로, 시설운영자는 균등하고 적절한 염소농도를 유지하기 위해 추가적인 염소 재투입시설을 설치하여 함께 관리하고 있다. 이 때, 염소투입 시설의 운영계획은 EPANET과 같은 상수관망 해석모형의 수질모의를 바탕으로 수립된다. 그러나 일반적으로 수질모의는 수리해석과는 달리 긴 시간이 소요되는 단점이 존재한다. 본 연구에서는 이러한 단점을 개선하기 위해, 특정 네트워크의 수질모의 결과를 학습시킨 인공신경망(ANN) 모형을 구축하고 이를 이용하여 상수관망 수질모의 계산시간을 단축하고자 하였다. 여기서 ANN모형의 학습은 EPANET을 통해 미리 선정된 다양한 염소 투입지점의 염소 투입농도와 용수 공급량 자료, 그리고 주요 관측지점에서 측정된 염소농도자료를 이용하였다. 학습된 ANN모형을 EPANET 수질모의 결과와 비교 및 검증을 실시한 결과, 사전에 소요된 학습시간을 제외하면 수질모의 소요시간 측면에서 큰 개선효과를 보였으며, 대표지점에서의 수질모의 결과가 유사하였다. 추가적으로, 본 연구에서는 학습된 ANN모형과 최적화 알고리즘인 GA(Genitic Algorithm)를 연계하여 상수관망에서의 염소 재투입 스케줄링을 최적화하는 프로그램을 개발함으로써, 안전하고 경제적인 상수관망의 수질운영에 기여하고자 하였다.

  • PDF

A new approach to design isolation valve system to prevent unexpected water quality failures (수질사고 예방형 상수도 관망 밸브 시스템 설계)

  • Park, Kyeongjin;Shin, Geumchae;Lee, Seungyub
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1211-1222
    • /
    • 2022
  • Abnormal condition inevitably occurs during operation of water distribution system (WDS) and requires the isolation of certain areas using isolation valves. In general, the determination of the optimal location of isolation valves considered minimization of hydraulic failures as isolation of certain areas causes a change in hydraulic states (e.g., flow direction, velocity, pressure, etc.). Water quality failure can also be induced by changes in hydraulics, which have not been considered for isolation valve system design. Therefore, this study proposes a new isolation valve system design methodology to prevent unexpected water quality failure events. The new methodology considers flow direction change ratio (FDCR), which accounts for flow direction changes after isolation of the area, as a constraint while reliability is used as the objective function. The optimal design model has been applied to a synthetic grid network and the results are compared with the traditional design approach. Results show that considering FDCR can eliminate flow direction changes while average pressure and coefficient of variation of pressure, velocity, and hydraulic geodesic index (HGI) outperform compared to the traditional design approach. The proposed methodology is expected to be a useful approach to minimizing unexpected consequences by traditional design approaches.

Multidimensional data generation of water distribution systems using adversarially trained autoencoder (적대적 학습 기반 오토인코더(ATAE)를 이용한 다차원 상수도관망 데이터 생성)

  • Kim, Sehyeong;Jun, Sanghoon;Jung, Donghwi
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.7
    • /
    • pp.439-449
    • /
    • 2023
  • Recent advancements in data measuring technology have facilitated the installation of various sensors, such as pressure meters and flow meters, to effectively assess the real-time conditions of water distribution systems (WDSs). However, as cities expand extensively, the factors that impact the reliability of measurements have become increasingly diverse. In particular, demand data, one of the most significant hydraulic variable in WDS, is challenging to be measured directly and is prone to missing values, making the development of accurate data generation models more important. Therefore, this paper proposes an adversarially trained autoencoder (ATAE) model based on generative deep learning techniques to accurately estimate demand data in WDSs. The proposed model utilizes two neural networks: a generative network and a discriminative network. The generative network generates demand data using the information provided from the measured pressure data, while the discriminative network evaluates the generated demand outputs and provides feedback to the generator to learn the distinctive features of the data. To validate its performance, the ATAE model is applied to a real distribution system in Austin, Texas, USA. The study analyzes the impact of data uncertainty by calculating the accuracy of ATAE's prediction results for varying levels of uncertainty in the demand and the pressure time series data. Additionally, the model's performance is evaluated by comparing the results for different data collection periods (low, average, and high demand hours) to assess its ability to generate demand data based on water consumption levels.