• Title/Summary/Keyword: Water distribution system

Search Result 1,588, Processing Time 0.028 seconds

A SYSTEM DEVELOPMENT FOR ESTIMATING NON-POINT SOURCES POLLUTANT LOADS FROM WATERSHEDS USING GIS

  • Shim, Soon-Bo;Kim, Joo-Hun;Koh, Deuk-Koo
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.223-231
    • /
    • 2000
  • The purpose of this study is the development of a system for estimating non-point sources pollutant loads from a watershed, which enables users to get insights of pollutant load distribution in the watershed during rain as well. Based on the Geographic Information System, this non-point source pollutant loading estimation system(NSPLES) consists of three distinct models such as a distributed rainfall-runoff model, a soil loss and delivery model, and a non-point source pollutant model. It also includes GIS modules for preprocessing the input data for the models and graphical postprocessing of the model outputs. The system output aren't only the hydrograph, sedimentograph, and pollutograph at the watershed outlet, but also various maps that show the distribution of soil loss over the watershed. The developed system was applied to the two upper stream areas of Sumjin river basin, Ssangchi and Gwanchon basins, and three rainfall events for respective subbasins during 1992 and 1998 were selected for the system application. The results of this showed relatively higher corelation between observed data and simulated data, and proved the applicability of the system.

  • PDF

Study of Snow Depletion Characteristics at Two Mountainous Watersheds Using NOAA AVHRR Time Series Data

  • Shin, Hyungjin;Park, Minji;Chae, Hyosok;Kim, Saetbyul;Kim, Seongjoon
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.315-324
    • /
    • 2013
  • Spatial information of snow cover and depth distribution is a key component for snowmelt runoff modeling. Wide snow cover areas can be extracted from NOAA AVHRR or Terra MODIS satellite images. In this study eight sets of annual snow cover data (1997-2006) in two mountainous watersheds (A: Chungju-Dam and B: Soyanggang-Dam) were extracted using NOAA AVHRR images. The distribution of snow depth within the Snow Cover Area (SCA) was generated using snowfall data from ground meteorological observation stations. Snow depletion characteristics for the two watersheds were analyzed snow distribution time series data. The decreased pattern of SCA can be expressed as a logarithmic function; the determination coefficients were 0.62 and 0.68 for the A and B watersheds, respectively. The SCA decreased over 70% within 10 days from the time of maximum SCA.

An Experimental Study on the Temperature Distribution in IRWST

  • Kim, Sang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.820-829
    • /
    • 2004
  • The In-Containment Refueling Water Storage Tank (IRWST), one of the design improvements applied to the APR -1400, has a function to condense the high enthalpy fluid discharged from the Reactor Coolant System (RCS). The condensation of discharged fluid by the tank water drives the tank temperature high and causes oscillatory condensation. Also if the tank cooling water temperature approaches the saturated state, the steam bubble may escape from the water uncondensed. These oscillatory condensation and bubble escape would burden the undue load to the tank structure, pressurize the tank, and degrade its intended function. For these reasons simple analytical modeling and experimental works were performed in order to predict exact tank temperature distribution and to find the effective cooling method to keep the tank temperature below the bubble escape limit (93.3$^{\circ}C$), which was experimentally proven by other researchers. Both the analytical model and experimental results show that the temperature distributions are horizontally stratified. Particularly, the hot liquid produced by the condensation around the sparger holes goes up straight like a thermal plume. Also, the momentum of the discharged fluid is not so strong to interrupt this horizontal thermal stratification significantly. Therefore the layout and shape of sparger is not so important as long as the location of the sparger hole is sufficiently close to the bottom of the tank. Finally, for the effective tank cooling it is recommended that the locations of the discharge and intake lines of the cooling system be cautiously selected considering the temperature distribution, the water level change, and the cooling effectiveness.

Predicting the likelihood of impaired stream segments using Geographic Information System on Abandoned Mine Land in Gangwon Province

  • Lee, Ju-Young;Yang, Jung-Suk;Choi, Jae-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1081-1083
    • /
    • 2007
  • The study in river basin has been performed for the identify water quality impaired stream segments, to create a priority ranking of those segments, and to calculate the heavy metal ion distribution for each impaired segment based on chemical and physical water quality standards. Two methods for modeling the potential area-specific heavy metal distribution are pursued in this study. First, a novel approach focuses on distance. Heavy metal distribution can be associated with a particular small geographic area. Based on the derived estimates an distribution map can be generated. Second, the approach is used the near watershed by means of kriging interpolation algorithm. These approaches provide an alternative distribution mapping of the area. The exposure estimates from both of these modeling methods are then compared with other environmental monitoring data. A GIS-based model will be used to mimic the hierarchical stream structure and processes found in natural watershed. Specifically, the relationship between landscape variables and reach scale habitat conditions most influential found in the Abandoned mine will be explored.

  • PDF

An Optimal Design of Paddy Irrigation Water Distribution System (논관개용 관수로시스템의 최적설계)

  • 안태진;박정응
    • Water for future
    • /
    • v.27 no.4
    • /
    • pp.161-171
    • /
    • 1994
  • The water distribution system problem consists of finding a minimum cost system design subject to hydraulic and operation constraints. The design of new branching network in a paddy irrigation system is presented here. The program based on the linear programming formulation is aimed at finding the optimal economical combination of two main factors: the capital cost of pipe network and the energy cost. Two loading conditions and booster pumps for design of pipe network are considered to obtain the least cost design.

  • PDF

Determination Methods of Pressure Monitoring Location in Water Distribution System (상수관망에서 수압모니터링지점 선정방법)

  • Kwon, Hyuk Jae
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.11
    • /
    • pp.1103-1113
    • /
    • 2013
  • In this study, determination methods of the pressure monitoring location in water distribution system were introduced and applied to sample pipe network. The best determination method of the pressure monitoring location was suggested and applied to the real city pipe network. Three kinds of determination methods of pressure monitoring locations are categorized such as the sensitivity analysis according to changing roughness coefficient, pressure contribution analysis, and sensitivity analysis according to changing demand. Further-more, pressure contribution analysis and sensitivity analysis from the results of unsteady analysis were conducted and compared each other. From the results, the most accurate and simplest method was selected in this study. Therefore, the best method can be applied for the pressure management or leakage detection as a determination method of pressure monitoring location in water distribution system.

Analysis of Pipe-Burst effect in Water Distribution Network (상수관망의 관로파열 영향 해석)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.665-675
    • /
    • 2002
  • It is very closely related with the reliability of the pipe network to predict pipe burst and diminish burst effect in water distribution system. Most of the engineers have not consider pipe layout and the effect of pipe burst in conservative pipe network design. In this study, The effect of pipe burst in the network is analyzed with respect to pipe network geometric topology and the method of increasing the system reliability is presented by reducing pipe-burst effect. In existing pipe system, it is only designed to the closed loop system but in case of each pipe burst, it cannot transmit appropriate water to consumers and occurs severe hydraulic head drop in many nodes. The techniques developed in this study allow proper pipe diameter and pipe layout to pipe system through the analysis of pipe-burst effect. Thus, when each pipe is bursted, pipe system is prevented from severe pressure head drop in demand nodes and can supply stable flowrate to consumer.

Preliminary Molecular Dynamics Simulations of the OSS2 Model for the Solvated Proton in Water

  • Lee, Song Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.847-849
    • /
    • 2001
  • The OSS2(Ojame-Shavitt-Singer 2)[L. Ojame et al., J. Chem. Phys. 109, 5547 (1998)] model as a dissociable water model is examined in order to study the dynamics of H+ in water. MD simulations for 216 water system, 215 water + H+ ion system, and 215 water + OH- ion system using the OSS2 model at 298.15 K with the use of Ewald summation are carried out. The calculated O-H radial distribution functions for these systems are essentially the same and are in very good agreement with that obtained by Ojame.

Prediction of Chlorine Residual in Water Distribution System (상수관망내 잔류염소농도 분포 예측)

  • Joo, Dae-Sung;Park, No-Suk;Park, Heek-Yung;Oh, Jung-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.118-124
    • /
    • 1998
  • To use chlorine residual as an surrogate parameter of the water quality change during the transportation in the water distribution system(WDS), the correct prediction model of chlorine residual must be established in advance. This paper shows the procedure and the result of applying the water quality model to the field WDS. To begin with, hydraulic model was calibrated and verified using fluoride as an tracer. And chlorine residual was predicted through simulation of water quality model. This predicted value was compared with the observed value. With adjusting the bulk decay coefficient(kb) and the wall decay coefficient(kw) according to the pipewall environment, the predicted chlorine residual can represent the observed value relatively well.

  • PDF

배수 System내의 수질

  • Park, Hyeon-U
    • 수도
    • /
    • s.16
    • /
    • pp.42-44
    • /
    • 1978
  • 지난 10월 일본 경도에서 개최된 제12회 국제수도회의에서 특별의제로 보고된바 있는 화란의 D. Van der Kooij 및 B. C. J. Zoeteman 량씨의 논문 Water quality in distribution systems의 내용중 일부를 초역하여 소개한다.

  • PDF