• Title/Summary/Keyword: Water direct contact

Search Result 166, Processing Time 0.029 seconds

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.

Change in Mineralogical Characteristics of the Laminated Diatomaceous Siliceous Mudstone by the Treatment of Consolidants (엽층리가 발달된 규조토성 규질이암의 강화제에 의한 광물학적 특성변화)

  • Do, Jin Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.51-64
    • /
    • 2022
  • For effective preservation of the rocks, which bearing plant fossils at Gumkwangdong Formation, Pohang, the properties of rock and treatment of chemicals were examined in an artificial weathering test. The rocks are diatomaceous siliceous mudstone, which contain a small amount of smectite and has developed laminated layers. The rocks react with water, the d001 spacing of smectite was increased. On the one hand, the physical properties of the rock samples, such as surface hardness, improved after the application of ethyl silicate-based stone strengthener. On the other hand, the spacing of interlayer of swelling clay minerals decreased and spacing of laminae layer increased. When the ethyl silicate-based stone strengthener was applied after pretreatment with a swelling inhibitor, interlayer and spacing of laminae changes were similar to those when only the stone strengthener was treated. The effect of the swelling inhibitor was almost negligible. When the rocks that have been conserved with chemicals react with water, spacing of laminae has widened much, whereas when the rocks was in contact with moisture only, there was little change. In addition, if it is placed in the outdoor after conservation treatment, although it occurs slightly slower than the untreated rock, the separation of the lamination layer and the pulverization of the rock occur within a very short time. Consolidation is required to improve the physical properties of fossil rock, but when exposed to rain and undergoing freeze-thaw process, the effect is lost very quickly. Therefore, regardless of the chemical treatment, it is a priority to prevent direct rainfall contact with the rock.

Characteristics of Disinfection Byproducts in Tap Water of Seoul (서울시 수돗물 배급수 계통에서 소독부산물 분포특성)

  • Chang, Hyun Seong;Lee, Do Weon;Kim, Chang Mo;Lee, In Suk;Lee, Su Won;Park, Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.216-226
    • /
    • 2006
  • Total trihalomethanes (THMs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) that are the major disinfection byproducts (DBPs) are monitored continuously in drinking water in Seoul. Study on characteristics of DBPs is crucial to judge the safety of drinking water in Seoul. Analysis of THMs, haloacetonitriles (HANs), chloral hydrate (CH), and haloacetic acids (HAAs) was carried out in several distribution systems from January 2002 to December 2004. The concentration of THMs was 0.015 mg/L in purified water, 0.019 mg/L in tapwater by direct service, and 0.023 mg/L in tapwater through watertank, respectively. It might be due to the increased contact time with chlorine by a process of the distribution system. And the other DBPs show a tendency to increase in its concentration by a process of the distribution system. Also, in summer, the concentration of DBPs was higher than in spring and winter. It might be due to the higher temperature of water in summer. In all cases, the quantities of detected DBPs were 4-6 times lower than those of regulation limits of drinking water in Seoul. In view of these results, the tapwater in Seoul is good to drink it all the times.

Study on the Gas Permeation Behaviors of Surface Fluorinated Polysulfone Membranes (표면불소화 폴리설폰 막의 기체 투과거동에 관한 연구)

  • Kim, Dae-Hoon;Im, Hyeon-Soo;Kim, Min-Sung;Lee, Byung-Seong;Lee, Bo-Sung;Yoon, Seok-Won;Kim, Beom-Sik;Park, You-In;Cheong, Seong-Ihl;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.537-543
    • /
    • 2009
  • The direct fluorination of polymers is a heterogeneous reaction using the mixture of $F_2$ and inert gas. In general, the resulting fluorinated polymers have good barrier property chemical stability similar to those of the fluoro-polymers, and could be prepared from the simple process. In this study, the polysulfone dense films were surface fluorinated using the direct fluorination technique and gas permeability and selectivity of the prepared membranes were measured with varying both $F_2$ concentration and reaction time. The introduction of $F_2$ was confirmed by X-ray photoelectron spectroscopy (XPS), water contact angles, and atomic force microscopy (AFM). As the $F_2$ increased, the permeability decreased while the selectivities for $O_2$, $CO_2$, and He gases relative to $N_2$ increased.

A Study on the Water Reuse Systems (중수도개발연구(中水道開發研究))

  • Park, Chung Hyun;Lee, Seong Key;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.4
    • /
    • pp.113-125
    • /
    • 1984
  • Water supply has been mainly dependent on the construction of the dams in Korea. It is difficult, however, to continue to construct dams for many reasons, such as the decrease of construction sites, the increase of construction costs, the compensation of residents in flooded areas, and the environmental effects. Water demands have increased and are expected to continue increasing due to the concentration of people in the cities, the rise of the living standard, and rapid industrial growth. It is acutely important to find countermeasures such as development of ground water, desalination, and recycling of waste water to cope with increasing water demands. Recycling waste water includes all means of supplying non-potable water for their respective usages with proper water quality which is not the same quality as potable water. The usages of the recycled water include toilet flushing, air conditioning, car washing, yard watering, road cleaning, park sprinkling, and fire fighting, etc. Raw water for recycling is obtained from drainage water from buildings, toilets, and cooling towers, treated waste water, polluted rivers, ground water, reinfall, etc. The water quantity must be considered as well as its quality in selecting raw water for the recycling. The types of recycling may be classified roughly into closed recycle systems and open recycle systems, which can be further subdivided into individual recycle systems, regional recycle systems and large scale recycle system. The treatment methods of wastewater combine biochemical and physiochemical methods. The former includes activated sludge treatment, bio-disc treatment, and contact aeration treatment, and the latter contains sedimentation, sand filtration, activated carbon adsorption, ozone treatment, chlorination, and membrane filter. The recycling patterns in other countries were investigated and the effects of the recycling were divided into direct and indirect effects. The problems of water reuse in recycle patterns were also studied. The problems include technological, sanitary, and operational problems as well as cost and legislative ones. The duties of installation and administrative organization, structural standards for reuse of water, maintenance and financial disposal were also studied.

  • PDF

Effect of Hydrocarbon Uptake Modes on Oil Degradation Rate by Mixed Cultures of Petroleum Degraders (Hydrocarbon Uptake Modes에 따른 유류분해 미생물 혼합체의 원유분해능)

  • 고성환;이홍금;김상진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.606-614
    • /
    • 1998
  • In this study, biodegradation rate of Arabian light crude oil by mixed cultures of selected petroleum-degraders was determined. Their modes of hydrocarbon uptake were then observed to determine whether there are differences in biodegradation rate by the mixed cultures. By the mixed cultures of petroleum-degraders having same modes of hydrocarbon uptake, such as strain US1 and K1 (using pseudo-solubilized hydrocarbons by a biosurfactants), K2-2 and P1(using hydrocarbons by direct contact), CL 180 and IC-10 (mixed type of uptake modes), the biodegradation rates of aliphatics in the crude oil were increased more than those by their pure cultures, about 40%, 25% and 20%, respectively. Biodegradation rate of strain KH3-2 (using only water- dissolved hydrocarbons) was increased by mixed cultures with strain K1, CL180 or IC-10 possessing high emulsifying activity. However, the biodegradation rate of the crude oil was decreased about 20%-40% by the mixed cultures of petroleum-degraders having different mode of hydrocarbon uptake, such as addition of strain US1 or K1 in the cultures of K2-2 or P1. Biosurfactants produced by US1 or K1 seems to enhance the emulsification of crude oil in aqueous phase but inhibit the attachment of K2-2 or P1 to crude oil. As same phenomena, the addition to Triton X-100 into the culture of strain US1, K1, CL180, IC-10 or KH3-2 increased the biodegradation rate, but the addition in the culture of strain K2-2 or P1 decreased the biodegradation rate. The mixed culture made of CL180, IC-10 and KH3-2 degraded 61.5% of aliphatics and 69% of aromatics in 3% (v/v) of Arabian light crude oil added.

  • PDF

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

Pharmaceutical Studies on Microencapsulated Pivampicillin Hydrochloride (염산피밤피실린의 마이크로캅셀에 관(關)한 약제학적(藥劑學的) 연구(硏究))

  • Lee, Wan-Ha;Jee, Ung-Kil;Lee, Young-Hwan;Kim, Sang-Rin
    • Journal of Pharmaceutical Investigation
    • /
    • v.15 no.2
    • /
    • pp.53-62
    • /
    • 1985
  • Pivampicillin hydrochloride is a kind of broad spectrum antibiotics with bactericidal action, and is used in many countries, although it has bitter taste, unpleasant odour and side effects of irritating gastric mucosa, nausea, penicillin allergy, etc. For the improvement of such side effects of pivampicillin hydrochloride, microcapsules, with wall of ethylcellulose, have been prepared by coacervation method. The shape was observed through the scanning electron microscope, the release of the drug into an aqueous medium was studied and the effects of core: ethylcellulose ratio were interpreted as well as making sensory evaluation of taste and odour. There was decreasing trend in dissolution rate of the drug with the increase of core: ethylcellulose ratios, and the smaller microcapsules released their contents more rapidly. A linear relationship was established between the amount of ethylcellulose and the time for 60% release of the drug, and the release pattern was found to have similar characteristics to the release of the drug from an insoluble porous matrix. The release of the drug in the artificial intestinal fluids (pH 6.8) was found to be similar to that in water, while the release in the artificial gastric juice (pH 1.2) was slightly slower. Bioavailability of microcapsule was compared with that of pivampicillin hydrochloride in rabbits using serum concentration and urinary excretion measurements. Microcapsule gave showed slightly higher serum level than pivampicillin hydrochloride from 2 hours after administration, while no significant difference was observed in the accumulated urinary excretion rate between pivampicillin hydrochloride and microcapsule. The ulcer index of pivampicillin hydrochloride administered group was 2.6, and microcapsule administered group was 1.5, while control group was 0.8. Therefore it may be concluded that microencapsulation of pivampicillin hydrochloride is a useful pharmaceutical approach to protect the gastrointestinal tract from being injured by direct contact of pivampicillin hydrochloride without any significant difference of bioavailability.

  • PDF

A Study on the User Experience of Food Waste at Home (가정에서의 음식물류 폐기물 처리에 대한 사용자 경험 연구)

  • Jeon, Eun-Ha;Yang, Sung-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.79-87
    • /
    • 2020
  • The environmental problems caused by food waste have been a steady social issue, and the severity of the problem emerged as the 2013 London Convention banned the marine emissions of waste water. The government implemented measures related to food waste, but prior studies showed that it lacked continuity and lacked strategies for each area of occurrence, and emphasized that citizens' participation is important to implement effective reduction policies. Therefore, this study proposed a food waste disposal machine through user experience analysis as a way to induce civic participation. To this end, the design development direction was outlined in this study after the pre-research and user survey stages through FGI and user journey maps. Based on this, the proposed treatment machine facilitates the frequent discharge of waste and simplifies the process of food waste in the home. In addition, the moment of direct contact between the user and waste is only the point at which the waste is released to the handler, thereby minimizing the negative experience the user has experienced.

A Study on the Effects of Chemical Grout on the Shear Strength of Fresh Granite Joints (신선한 화강암 절리면에서 약액에 의한 전단강도의 변화에 대한 연구)

  • Chung, Hyung Sik;Lee, Seung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.99-106
    • /
    • 1990
  • This study was aimed to see the effect of chemical grout on fresh granite joint shear strength. The grouting chemical used in this study was composed of 25% water glass. Direct shear tests were performed on the chemical filled joints, which had been made artificially with granite. The test results show that chemical grouted rock jonts have markedly reduced shear strength comparing with the ungrouted fresh joints and they sheared within chemical grout before the rock to rock contact had been established, while the ungrouted joint sheared between rock surfaces from the beginning of shear deformation. With chemical grouted joints the shear stress slowly reached its maximum without showing distinct peak shear strength. Therefore the shear stiffness of joints were decreased with increasing thickness of grout. but the shear strain at failure was increased with it.

  • PDF