• Title/Summary/Keyword: Water diffusion coefficient

Search Result 274, Processing Time 0.027 seconds

Crack and Time Effect on Chloride Diffusion Coefficient in Nuclear Power Plant Concrete with 1 Year Curing Period (1년 양생된 고강도 원전 콘크리트의 염화물 확산에 대한 균열 및 시간효과)

  • Chun, Ju-Hyun;Ryu, Hwa-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Concrete structure for nuclear power plant is mass concrete structure with large wall depth and easily permits cracking in early age due to hydration heat and drying shrinkage. It always needs cooling water so that usually located near to sea shore. The crack on concrete surface permits rapid chloride intrusion and also causes more rapid corrosion in the steel. In the study, the effect of age and crack width on chloride diffusion is evaluated for the concrete for nuclear power plant with 6000 psi strength. For the work, various crack widths with 0.0~1.4 mm are induced and accelerated diffusion test is performed for concrete with 56 days, 180days, and 365 days. With increasing crack width over 1.0mm, diffusion coefficient is enlarged to 2.7~3.1 times and significant reduction of diffusion is evaluated due to age effect. Furthermore, apparent diffusion coefficient and surface chloride content are evaluated for the concrete with various crack width exposed to atmospheric zone with salt spraying at the age of 180 days. The results are also analyzed with those from accelerated diffusion test.

Changes in Cement Hydrate Characteristics and Chloride Diffusivity in High Performance Concrete with Ages (재령에 따른 고성능 콘크리트의 수화 특성치와 염화물 확산성 변화)

  • Koh, Tae-Ho;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.9-17
    • /
    • 2019
  • Cement hydrates and the related characteristics change with ages, and the behaviors are much related with chloride diffusion. In this work, 30% replacement ratio with FA(Fly Ash) and GGBFS(Ground Granulated Blast Furnace Slag) are considered for concrete with three levels of W/B (Water to Binder ratio) and 2 years of curing period. Chloride diffusion coefficients from accelerated condition are obtained at 5 measurement period (28days, 56days, 180days, 365days, and 730days), and the results are compared with porosity, binding capacity, and permeability from program-DUCOM. The similar changing pattern between chloride diffusion and permeability is observed since permeability is proportional to the square of porosity. Curing period is grouped into 4 periods and the changing ratios are investigated. Cement hydrate characteristics such as porosity, permeability, and diffusion coefficient are dominantly changed at the early ages (28~56 days), and diffusion coefficient in OPC concrete with low W/B continuously changes to 180days.

Self-Diffusion of THO within Tactic Poly(2-hydroxyethyl methacrylate) Membranes

  • Kim, Hye-Kyeong;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.3
    • /
    • pp.128-132
    • /
    • 1983
  • The self-diffusion experiment of water was performed across two series of tactic poly(2-hydroxyethyl methacrylate), P(HEMA) membranes prepared by crosslinking with various amount of hexamethylene diisocyanate (HMDIC). The tagging material was tritium hydroxide (THO) and the efflux of THO was counted on a Liquid Scintillation Counter. The transport data of THO show that the permeability decreases as the amount of HMDIC increased from 2.5 to 10 mole % and the self-diffusions coefficient shows a parallel trend with it. The diffusivity data was discussed in terms of the change of water structural orderliness within membranes. Using the relation between viscosities and diffusivities derived from Eyring's absolute rate theory, the corresponding viscosities of water within two series of tactic P(HEMA) membranes were obtained. From this, it is seen that the viscosity of water within tactic P(HEMA) membranes may have the same values with those of supercooling water whose temperature ranges from -28 to -$36^{\circ}C.$.

Introduction of Numerical Analysis Method for Calculation of Diffusion Property in Interlayer Water of Expansible Clay Mineral (팽창성 점토광물 내 층간수의 확산특성분석을 위한 수치해석학적 방법)

  • Choi, Jung-Hae;Chae, Byung-Gon;Chon, Chul-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.211-220
    • /
    • 2012
  • The numerical modeling and simulation have been used increasingly as tools for examining and interpreting the bulk structure and properties of materials. The use of molecular dynamics (MD) simulations to model the structure of materials is now both widespread and reasonably well understood. In this research, we introduced the numerical method to calculate the physico-chemical properties such as a diffusion coefficient and a viscosity of clay mineral. In this research, a series of MD calculations were performed for clay mineral and clay-water systems, appropriate to a saturated deep geological setting. Then, by using homogenization analysis (HA), the diffusion coefficients are calculated for conditions of the spatial distribution of the water viscosity associated with some configuration of clay minerals. This result of numerical analysis is quite similar to the previous experimental results. It means that the introduced numerical method is very useful to calculate the physico-chemical properties of clay minerals under various environmental conditions.

An adaptive approach for the chloride diffusivity of cement-based materials

  • Tran, Bao-Viet;Pham, Duc-Chinh;Loc, Mai-Dinh;Le, Minh-Cuong
    • Computers and Concrete
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2019
  • Adaptive schemes are constructed in this paper for modeling the effective chloride diffusion coefficient of cement-based materials (paste and concrete). Based on the polarization approximations for the effective conductivity of isotropic multicomponent materials, we develop some fitting procedures to include more information about the materials, to improve the accuracy of the scheme. The variable reference parameter of the approximation involves a few free scalars, which are determined through the available numerical or experimental values of the macroscopic chloride diffusion coefficient of cement paste or concrete at some volume proportions of the component materials. The various factors that affect the chloride diffusivity of cement-based material (porous material structure, uncertainty of value of the chloride diffusion coefficient in water-saturated pore spaces, etc.) may be accounted to make the predictions more accurate. Illustrations of applications are provided in a number of examples to show the usefulness of the approach.

Vertical distribution of suspended sediment concentration - A case study in Cu Lao Dung Coastal Areas (Vietnam)

  • Tien H. Le Nguyen;Phuoc H. Vo Luong
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.313-324
    • /
    • 2023
  • The vertical distribution of suspended sediments in the mangrove-mud coast is complicated due to the characterization of cohesive sediment properties, and the influence of hydrodynamic factors. In this study, the time-evolution of suspended sediment concentration (SSC) in water depth is simulated by a one-dimensional model. The model applies in-situ data measured in October 2014 at the outer station in Cu Lao Dung coastal areas, Soc Trang, Vietnam. In the model, parameters which have influence on vertical distribution of SSC include the settling velocity Ws and the diffusion coefficient Kz. The settling velocity depends on the cohesive sediment properties, and the diffusion coefficient depends on the wave-current dynamics. The settling velocity is determined by the settling column experiment in the laboratory, which is a constant of 1.8 × 10-4 ms-1. Two hydrodynamic conditions are simulated including a strong current condition and a strong wave condition. Both simulations show that the SSC near the bottom is much higher than ones at the surface due to higher turbulence at the bottom. At the bottom layer, the SSC is strongly influenced by the current.

Experimental Study for Evaluation of Chloride Ion Diffusion Characteristics of Concrete Mix for Nuclear Power Plant Water Distribution Structures (원전 취배수 구조물 콘크리트 배합의 염소이온 확산특성 평가를 위한 실험적 연구)

  • Lee, Ho-Jae;Seo, Eun-A
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.112-118
    • /
    • 2022
  • In this study, the diffusion characteristics were evaluated using the concrete mix design of nuclear safety-related structures. Among the concrete structures related to nuclear power safety, we selected the composition of intake and drainage structures that are immersed in seawater or located on the tidal platform and evaluated the chloride ion permeation resistance by compressive strength and electrical conductivity and the diffusion characteristics by immersion in salt water. analyzed. Compressive strength was measured on the 1st, 7th, 14th, 28th, 56th, and 91st days until the 91st day, which is the design standard strength of the nuclear power plant concrete structure, and chloride ion permeation resistance was evaluated on the 28th and 91st. After immersing the 28-day concrete specimens in salt water for 28 days, the diffusion coefficient was derived by collecting samples at different depths and analyzing the amount of chloride. As a result, it was found that after 28 days, the long-term strength enhancement effect of the nuclear power plant concrete mix with 20% fly ash replacement was higher than that of concrete using 100% ordinary Portland cement. It was also found that the nuclear power plant concrete mix has higher chloride ion permeation resistance, lower diffusion coefficient, and higher resistance to salt damage than the concrete mix using 100% ordinary Portland cement.

Transport Characteristics of Alcohol Solutes through Copolymer Hydrogel Membranes Containing Poly(2-Hydroxyethylmethacrylate) (Poly(2-Hydroxyethylmethacrylate)를 포함한 공중합체 수화겔막에 대한 알콜용질의 투과특성)

  • Park, Yu Mi;Kim, Eun Sik;Seong, Yong Gil
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 1990
  • Three kinds of hydrogel membranes were prepared by the copolymerization of 2-hydroxyethylmethacrylate (HEMA) with acrylamide, N, N-dimethylamide and methylmethacrylate in the presence of solvent and crosslinker respectively. The equilibrium water content, relative permeability and partition coefficient of the membranes for alcohol solutes were measured. It has been found that the permeation of organic solute occurs through the water-filled regions in the hydrogel membrane, and that the gpermeability coefficient of organic solute depends on the molecular size. But the permeability of organic solute was controlled by the interaction of solute-membrane at the low water content. By the partition data, it has been shown that the partition of solute is only controlled by hydrophobic interaction between solute and membrane. The diffusion coefficient data were interpreted on the basis of water-solute interaction. It has been found that the diffusion of organic solute is determined by the free volume of water in the membrane, and that hardly depends on polarity-polarizability and hydrogen bonding ability between water and solute.

  • PDF

Influence of Relative humidity on the CO2 Diffusion Coefficient in Concrete (콘크리트 중의 이산화탄소 확산계수에 대한 상대습도 영향 연구)

  • Oh, Byung-Hwan;Jung, Sang-Hwa;Lee, Myung-Kun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.778-784
    • /
    • 2003
  • The carbonation of concrete is one of the major factors that cause durability problems in concrete structures. The rate of carbonation depends largely upon the diffusivity of carbon dioxide in concrete. The purpose of this study is to identify the diffusion coefficients of carbon dioxide for various concrete mixtures. To this end, several series of tests have been planned and conducted. The test results indicate that the diffusion of carbon dioxide reached the steady-state within about five hours after exposure. The diffusion coefficient increases with the increase of water-cement ratio and decreases with the increase of relative humidity at the same water-cement ratio. The content of aggregates also influences the diffusivity of carbon dioxide in concrete. It was found that the diffusion coefficient of cement paste is larger than that of concrete or mortar. The experimental study of carbon dioxide diffusivity in this study will allow more realistic assessment of carbonation depth in concrete structures.

The Analytical Derivation of the Fractal Advection-Diffusion Equation for Modeling Solute Transport in Rivers (하천 오염물질의 모의를 위한 프랙탈 이송확산방정식의 해석적 유도)

  • Kim, Sang-Dan;Song, Mee-Young
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.889-896
    • /
    • 2004
  • The fractal advection-diffusion equation (ADE) is a generalization of the classical AdE in which the second-order derivative is replaced with a fractal order derivative. While the fractal ADE have been analyzed with a stochastic process In the Fourier and Laplace space so far, in this study a fractal ADE for describing solute transport in rivers is derived with a finite difference scheme in the real space. This derivation with a finite difference scheme gives the hint how the fractal derivative order and fractal diffusion coefficient can be estimated physically In contrast to the classical ADE, the fractal ADE is expected to be able to provide solutions that resemble the highly skewed and heavy-tailed time-concentration distribution curves of contaminant plumes observed in rivers.