• Title/Summary/Keyword: Water demand forecasting

Search Result 55, Processing Time 0.036 seconds

Development of Basin-wide runoff Analysis Model for Integrated Real-time Water Management (실시간 물 관리 운영을 위한 유역 유출 모의 모형 개발)

  • Hwang, Man-Ha;Maeng, Sung-Jin;Ko, Ick-Hwan;Park, Jeong-In;Ryoo, So-Ra
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.507-510
    • /
    • 2003
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. A short-term water demand forecasting technology will be developed taking into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF

Low-flow simulation and forecasting for efficient water management: case-study of the Seolmacheon Catchment, Korea

  • Birhanu, Dereje;Kim, Hyeon Jun;Jang, Cheol Hee;ParkYu, Sanghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.243-243
    • /
    • 2015
  • Low-flow simulation and forecasting is one of the emerging issues in hydrology due to the increasing demand of water in dry periods. Even though low-flow simulation and forecasting remains a difficult issue for hydrologists better simulation and earlier prediction of low flows are crucial for efficient water management. The UN has never stated that South Korea is in a water shortage. However, a recent study by MOLIT indicates that Korea will probably lack water by 4.3 billion m3 in 2020 due to several factors, including land cover and climate change impacts. The two main situations that generate low-flow events are an extended dry period (summer low-flow) and an extended period of low temperature (winter low-flow). This situation demands the hydrologists to concentrate more on low-flow hydrology. Korea's annual average precipitation is about 127.6 billion m3 where runoff into rivers and losses accounts 57% and 43% respectively and from 57% runoff discharge to the ocean is accounts 31% and total water use is about 26%. So, saving 6% of the runoff will solve the water shortage problem mentioned above. The main objective of this study is to present the hydrological modelling approach for low-flow simulation and forecasting using a model that have a capacity to represent the real hydrological behavior of the catchment and to address the water management of summer as well as winter low-flow. Two lumped hydrological models (GR4J and CAT) will be applied to calibrate and simulate the streamflow. The models will be applied to Seolmacheon catchment using daily streamflow data at Jeonjeokbigyo station, and the Nash-Sutcliffe efficiencies will be calculated to check the model performance. The expected result will be summarized in a different ways so as to provide decision makers with the probabilistic forecasts and the associated risks of low flows. Finally, the results will be presented and the capacity of the models to provide useful information for efficient water management practice will be discussed.

  • PDF

Water Demand Forecasting by Characteristics of City Using Principal Component and Cluster Analyses

  • Choi, Tae-Ho;Kwon, O-Eun;Koo, Ja-Yong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2010
  • With the various urban characteristics of each city, the existing water demand prediction, which uses average liter per capita day, cannot be used to achieve an accurate prediction as it fails to consider several variables. Thus, this study considered social and industrial factors of 164 local cities, in addition to population and other directly influential factors, and used main substance and cluster analyses to develop a more efficient water demand prediction model that considers unique localities of each city. After clustering, a multiple regression model was developed that proved that the $R^2$ value of the inclusive multiple regression model was 0.59; whereas, those of Clusters A and B were 0.62 and 0.74, respectively. Thus, the multiple regression model was considered more reasonable and valid than the inclusive multiple regression model. In summary, the water demand prediction model using principal component and cluster analyses as the standards to classify localities has a better modification coefficient than that of the inclusive multiple regression model, which does not consider localities.

A Study on Daily Water Demand Prediction Model (급수량(給水量) 단기(短期) 수요예측(需要豫測)에 대한 연구(硏究))

  • Koo, Jayoug;Koizwui, Akirau;Inakazu, Toyono
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.109-118
    • /
    • 1997
  • In this study, we examined the structural analysis of water demand fluctuation for water distribution control of water supply network. In order to analyze for the length of stationary time series, we calculate autocorrelation coefficient of each case equally divided data size. As a result, it was found that, with the data size of around three months, any case could be used as stationary time series. we analyze cross-correlation coefficient between the daily water consumption's data and primary influence factors. As a result, we have decided to use weather conditions and maximum temperature as natural primary factors and holidays as a social factor. Applying the multiple ARIMA model, we obtains an effective model to describe the daily water demand prediction. From the forecasting result, even though we forecast water distribution quantity of the following year, estimated values well express the flctuations of measurements. Thus, the suitability of the model for practical use can be confirmed. When this model is used for practical water distribution control, water distribution quantity for the following day should be found by inputting maximum temperature and weather conditions obtained from weather forecast, and water purification plants and service reservoirs should be operated based on this information while operation of pumps and valves should be set up. Consequently, we will be able to devise a rational water management system.

  • PDF

Digital Twin based Household Water Consumption Forecasting using Agent Based Modeling

  • Sultan Alamri;Muhammad Saad Qaisar Alvi;Imran Usman;Adnan Idris
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.147-154
    • /
    • 2024
  • The continuous increase in urban population due to migration of mases from rural areas to big cities has set urban water supply under serious stress. Urban water resources face scarcity of available water quantity, which ultimately effects the water supply. It is high time to address this challenging problem by taking appropriate measures for the improvement of water utility services linked with better understanding of demand side management (DSM), which leads to an effective state of water supply governance. We propose a dynamic framework for preventive DSM that results in optimization of water resource management. This paper uses Agent Based Modeling (ABM) with Digital Twin (DT) to model water consumption behavior of a population and consequently forecast water demand. DT creates a digital clone of the system using physical model, sensors, and data analytics to integrate multi-physical quantities. By doing so, the proposed model replicates the physical settings to perform the remote monitoring and controlling jobs on the digital format, whilst offering support in decision making to the relevant authorities.

Evaporative demand drought index forecasting in Busan-Ulsan-Gyeongnam region using machine learning methods (기계학습기법을 이용한 부산-울산-경남 지역의 증발수요 가뭄지수 예측)

  • Lee, Okjeong;Won, Jeongeun;Seo, Jiyu;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.617-628
    • /
    • 2021
  • Drought is a major natural disaster that causes serious social and economic losses. Local drought forecasts can provide important information for drought preparedness. In this study, we propose a new machine learning model that predicts drought by using historical drought indices and meteorological data from 10 sites from 1981 to 2020 in the southeastern part of the Korean Peninsula, Busan-Ulsan-Gyeongnam. Using Bayesian optimization techniques, a hyper-parameter-tuned Random Forest, XGBoost, and Light GBM model were constructed to predict the evaporative demand drought index on a 6-month time scale after 1-month. The model performance was compared by constructing a single site model and a regional model, respectively. In addition, the possibility of improving the model performance was examined by constructing a fine-tuned model using data from a individual site based on the regional model.

The Research on Activation Plan for Seawater Desalination Plant Application in Korea (국내 해수담수화 플랜트 적용 활성화 방안 연구)

  • Sohn, Jinsik;Yang, Jeong-Seok;Park, Jinseo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.251-255
    • /
    • 2009
  • Foreign and domestic seawater desalination plant market investigation was performed to analyze the worldwide trend of seawater desalination plant market and to establish the activation plan for seawater desalination plant application. Water demand and seawater desalination related laws and regulations were investigated and analyzed for the activation plan. RO type and large scale plants are popular nowadays however there are only small plants in island region in Korea. There will be about $1 million\;m^3/day$ deficit in 2015 according to the water demand forecasting from Ministry of Environment and Ministry of Land, Transportation, and Maritime Affairs in Korea. Therefore, it is necessary to activate the domestic application of seawater desalination plant to secure stable water resources. To activate the domestic application of seawater desalination plant, first, we need to establish regulations, support system in the water service law for seawater desalination plant. Second, related Ministry should increase the support for the operation and management of seawater desalination plant and suggest the construction of seawater desalination plant for water resources security near seaside region.

Infrastructure Asset Management System Methodologies for Infrastructure Asset Management System in U.S.

  • Lee Sang-Youb;Chung Seung-Hyun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.67-72
    • /
    • 2003
  • Infrastructure asset management is a methodology for programming infrastructure capital investments and adjusting infrastructure service provision to fulfil established performance, considering the life-cycle perspective of infrastructure. In this study, the methodologies for infrastructure asset management system implemented in sewer management system, bridge management system, pavement and highway management system, and embankment dam management system are described with focus on the system in U.S. As the major methodology to support the decision-making for asset mangers to better allocate the limited funds to the area needing it the most. various demand forecasting methodologies used in wastewater, water, transportation, electricity, and construction are also introduced for their applicability towards infrastructure asset management.

  • PDF

A Study on Quantitative Models for Forecasting the Citizens' Demand on Public Facilities (공공수요예측을 위한 계량적 모형정립에 관한 연구 (하))

  • Park, Hyeong-Seok
    • 수도
    • /
    • s.2
    • /
    • pp.32-39
    • /
    • 1974
  • 공공수요의 적정한 예측만이 공급계획에 차질 없는 적정한 생산시설이 가능하므로 대단위화하여 가는 급수수요에서도 그 적정한 예측이 선행되어야 하겠다. 본 논문은 필자의 서울대학교 환경대학원 제1회 졸업논문을 간추린 것으로 제1호에 이어 게재한다.

  • PDF

Data mining analysis for short-term water demand forecasting (물 수요예측을 위한 데이터 마이닝 기법 분석)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1771_1772
    • /
    • 2009
  • 본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.

  • PDF