• Title/Summary/Keyword: Water demand

Search Result 1,848, Processing Time 0.03 seconds

Water Quality Monitoring for Hazard Analysis in Aquaculture Farm of Rainbow Trout (송어양식장의 위해요소 관리를 위한 수질 모니터링)

  • Kim, Young-Mog;Lee, Myung-Suk;Chung, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.4
    • /
    • pp.819-827
    • /
    • 2013
  • Water quality has been considered to be one of sanitation standard operating procedures (SSOP) for hazard analysis critical control points (HACCP) application in aquaculture farms. This study was conducted to evaluate a hazard caused by water used in aquaculture farm of rainbow trout. The water quality was analyzed to investigate both physiochemical and bacteriological level in water samples collected from aquaculture farm of rainbow trout, Oncorhynchus mykiss. No significant difference were observed on water temperature and pH from season to season. However, the levels of dissolved oxygen were decreased as the outside temperature was increased, even if the levels were adequate for aquaculture. Also, other physiochemical analysis including biochemical oxygen demand (BOD), chemical oxygen demand (COD) and suspended solid (SS) revealed that the waters for aquaculture analyzed in this study was suitable for rainbow trout aquaculture. The bacterial analyses were also revealed that the waters for aquaculture were met to both coliform group (<18 MPN/100mL) and viable cell count (<100 CFU/mL). However, some of waste waters from aquaculture farms showed higher levels of BOD and COD than those of waste water standard (<2 ppm), suggesting that regular cleaning of fish tank and precipitation tank is needed.

Spatio-temporal Water Quality Characteristics of Major Streams in Pal-dang Watershed (팔당수계 주요하천 수질의 시·공간적 특성)

  • Han, Mideok;Lee, Eunju;Oh, Jogyo;Kim, Woongsoo;Lee, Changhee;Namkung, Eun;Chung, Wookjin
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.394-403
    • /
    • 2009
  • A total of 52 sampling sites were selected in the stream network of the upper Paldang watershed (e.g. Kyonan, Gapyeong, Jojong, Chengmi, Bockha, Yanghwa and Heuk streams). Over the time period of April 2007-February 2008, 1820 samples were collected and analyzed for physico-chemical variables of the upper watershed in order to investigate spatio-temporal water quality variation in particular the relationship with land use. Although temporal variations of water quality in each stream were similar and were significantly influenced by flow, spatial variations in each stream varied as physico-chemical characteristics of upper watershed. As a result of regression analysis, Biological Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Nitrogen (T-N), and Total phosphorus (T-P) concentration were the most significantly and positively associated with people population density. It is necessary to manage not only water quality but also land use of upper watershed and flow flux.

Development and Evaluation of Simple Regression Model and Multiple Regression Model for TOC Contentation Estimation in Stream Flow (하천수내 TOC 농도 추정을 위한 단순회귀모형과 다중회귀모형의 개발과 평가)

  • Jung, Jaewoon;Cho, Sohyun;Choi, Jinhee;Kim, Kapsoon;Jung, Soojung;Lim, Byungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.625-629
    • /
    • 2013
  • The objective of this study is to develop and evaluate simple and multiple regression models for Total Organic Carbon (TOC) concentration estimation in stream flow. For development (using water quality data in 2012) and evaluation (using water quality data in 2011) of regression models, we used water quality data from downstream of Yeongsan river basin during 2011 and 2012, and correlation analysis between TOC and water quality parameters was conducted. The concentrations of TOC were positively correlated with Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), TN (Total Nitrogen), Water Temperature (WT) and Electric Conductivity (EC). From these results, simple and multiple regression models for TOC estimation were developed as follows : $TOC=0.5809{\times}BOD+3.1557$, $TOC=0.4365{\times}COD+1.3731$. As a result of the application evaluation of the developed regression models, the multiple regression model was found to estimate TOC better than simple regression models.

Assessment of Water Quality using Multivariate Statistical Techniques: A Case Study of the Nakdong River Basin, Korea

  • Park, Seongmook;Kazama, Futaba;Lee, Shunhwa
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.197-203
    • /
    • 2014
  • This study estimated spatial and seasonal variation of water quality to understand characteristics of Nakdong river basin, Korea. All together 11 parameters (discharge, water temperature, dissolved oxygen, 5-day biochemical oxygen demand, chemical oxygen demand, pH, suspended solids, electrical conductivity, total nitrogen, total phosphorus, and total organic carbon) at 22 different sites for the period of 2003-2011 were analyzed using multivariate statistical techniques (cluster analysis, principal component analysis and factor analysis). Hierarchical cluster analysis grouped whole river basin into three zones, i.e., relatively less polluted (LP), medium polluted (MP) and highly polluted (HP) based on similarity of water quality characteristics. The results of factor analysis/principal component analysis explained up to 83.0%, 81.7% and 82.7% of total variance in water quality data of LP, MP, and HP zones, respectively. The rotated components of PCA obtained from factor analysis indicate that the parameters responsible for water quality variations were mainly related to discharge and total pollution loads (non-point pollution source) in LP, MP and HP areas; organic and nutrient pollution in LP and HP zones; and temperature, DO and TN in LP zone. This study demonstrates the usefulness of multivariate statistical techniques for analysis and interpretation of multi-parameter, multi-location and multi-year data sets.

Classifying Agricultural Districts for Prioritizing Groudwater Development Area based on Correlation and Cluster Analysis (가뭄 대응형 지하수 개발 우선순위 선정을 위한 농촌용수구역의 유형 분석)

  • Oh, Yun-Gyeong;Lee, Sang-Hyun;Kim, Ara;Hong, Soun-Ouk;Yoo, Seung-Hwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.51-59
    • /
    • 2020
  • In this study, we analyzed the characteristics of 511 agricultural districts through statistical data, and classify these districts as the vulnerable area to drought through correlation and cluster analysis. The criteria for classification was related to ground-water recharge, irrigation water demand, and water supply. As a result, 8 types of agricultural districts were extracted. For example, the type 1 indicated the high priority area for ground-water development, thus the districts which were classified as type 1 showed ground-water use was less than 80 % of maximum capacity, and irrigation water supply was only 37.5 % and 76.5 % of irrigation water demand in upland and paddy field, respectively. As a result, 44 of 511 districts were classified as type 1.36 districts (types 5-8) were areas where groundwater development is limited. The results of this study are expected to provide useful information for establishing the direction of the rural area development project in connection with the revitalization of policy of people return to rural area.

MODFLOW-Farm Process Modeling for Determining Effects of Agricultural Activities on Groundwater Levels and Groundwater Recharge

  • Bushira, Kedir Mohammed;Hernandez, Jorge Ramirez
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.5
    • /
    • pp.17-30
    • /
    • 2019
  • Intensive agricultural development in Mexicali valley, Baja-California, Mexico, has induced tremendous strain on the limited water resources. Agricultural water consumption in the valley mainly relies on diversions of the Colorado River, but their water supply is far less than the demand. Hence, the use of groundwater for irrigation purposes has gained considerable attention. To account for these changes, it is important to evaluate surface water and groundwater conditions based on historical water use. This study identified the effects of agricultural activities on groundwater levels and groundwater recharge in the Mexicali valley (in irrigation unit 16) by a comprehensive MODFLOW Farm process (MF-FMP) numerical modeling. The MF-FMP modeling results showed that the water table in the study area is drawn downed, more in eastern areas. The inflow-outflow analysis demonstrated that recharge to the aquifer occurs in response to agricultural supplies. In general, the model provides MF-FMP simulations of natural and anthropogenic components of the hydrologic cycle, the distribution and dynamics of supply and demand in the study area.

Volume Estimation Method for Greenhouse Rainwater Tank (온실 빗물 저수조의 용량산정 방법)

  • Seo, Chan Joo;Koo, Ja-Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2016
  • Due to the temporal variation of inflow/outflow, the water tank is needed. For the calculation of water tank capacity, the absolute difference between cumulative amounts of supply(e.g., rainfall) and demand(e.g.,watering) is used. No matter the (-) and (+) the absolute maximum capacity of the subtraction is calculated as the capacity. In this paper, using rainfall and watering of greenhouse facilities, it is proved that the non-linear supply or demand can be applied, and it is proved also that the greater non-linear variation case. And as the time interval for monitoring is decreased, the basin or tank volume are increased, with approximately 10 days as the critical monitoring interval for the annual natural rainfall event.

A Study on the Regional Property for the Agricultural Water Demand (농업용수 수요량의 지역적 특성 조사 연구(관개배수 \circled1))

  • 김선주;이광야;여운식;박재흥
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.120-125
    • /
    • 2000
  • This study analyzes agricultural water demand nationwide which calculated by the estimation system for agricultural water demand(ESAD) with the data are observed in the other Studies. The results are as follows. Maximum, minimum and average values of annual evapotranspiration in paddy in 1,767 boundaries covering all the country are estimated as 819.2mm, 595.2mm and 702.9mm respectively. In the case of transplant seeding, the annual effective rainfall is estimated as 834.7mm to 464.3mm, while the average is 635.3mm. The amount of effective rainfall is largest in case of transplant seedlings and then come watered direct seeding and dry direct seeding regardless of region. Maximum, minimum and average values of annual evapotranspiration in upland in 1,767 boundaries are estimated as 659.97mm, 129.3mm and 411.8mm respectively. The annual effective rainfall is estimated as 607.2mm to 68.3mm while the average is 257.4mm. infiltration ratio in paddy in 1,767 boundaries applied in ESAD is 5.06mm/day in average, varying from 12.0mm/day to 2.0mm/day. Applied conveyance loss is 12.8% in average, varying from 18.0% to 8.0%.

  • PDF

Regional Drought Assessment Considering Climate Change and Relationship with Agricultural Water in Jeju Island (기후변화를 고려한 제주지역의 권역별 가뭄 평가 및 농업용수에의 영향 고찰)

  • Song, Sung-Ho;Yoo, Seung-Hwan;Bae, Seung-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.625-638
    • /
    • 2013
  • Recently, the occurrences of droughts have been increased because of global warming and climate change. Water resources that mostly rely on groundwater are particularly vulnerable to the impact of precipitation variation, one of the major elements of climate change, are very sensitive to changes in the seasonal distribution as well as the average annual change in the viewpoint of agricultural activity. In this study, the status of drought for the present and future on Jeju Island which entirely rely on groundwater using SPI and PDSI were analyzed considering regional distribution of crops in terms of land use and fluctuation of water demand. The results showed that the precipitation distribution in Jeju Island is changed in intensity as well as seasonal variation of extreme events and the amount increase of precipitation during the dry season in the spring and fall indicated that agricultural water demand and supply policies would be considered by regional characteristics, especially the western region with largest market garden crops. Regarding the simulated future drought, the drought would be mitigated in the SPI method because of considering total rainfall only excluding intensity variation, while more intensified in the PDSI because it considers the evapotranspiration as well as rainfall as time passed. Moreover, the drought in the northern and western regions is getting worse than in the southern region so that the establishment of regional customized policies for water supply in Jeju Island is needed.

Development of a decision scaling framework for drought vulnerability assessment of dam operation under climate change (Decision Scaling 기반 댐 운영 기후변화 가뭄 취약성 평가)

  • Kim, Jiheun;Seo, Seung Beom;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.273-284
    • /
    • 2023
  • Water supply is continuously suffering from frequent droughts under climate change, and such extreme events are expected to become more frequent due to climate change. In this study, the decision scaling method was introduced to evaluate the drought vulnerability under future climate change in a wider range. As a result, the water supply reliability of the Boryeong Dam ranged from 95.80% to 98.13% to the condition of the aqueduct which was constructed at the Boryeong Dam. Furthermore, the Boryeong Dam was discovered to be vulnerable under climate change scenarios. Hence, genetic algorithm-based hedging rules were developed to evaluate the reduction effect of drought vulnerability. Moreover, three demand scenarios (high, standard, and low demand) were also considered to reflect the future socio-economic change in the Boryeong Dam. By analyzing quantitative reliability and the probability of extreme drought occurrence under 5% of the water storage rate, all hedging rules demonstrated that they were superior in preparing for extreme drought under low-demand scenarios.