• Title/Summary/Keyword: Water cooling system

Search Result 1,156, Processing Time 0.032 seconds

The Optimum Selection and Drawing Output Program Development of Shell & Tube Type Oil Cooler (원통다관 형 오일냉각기의 최적선정 및 도면 출력 프로그램 개발)

  • Lee, Y.B.;Ko, J.M.;Kim, T.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2609-2614
    • /
    • 2007
  • Shell & Tube type Oil Cooler is widely used for hydraulic presses, die casting machines, generation equipments, machine tools and construction heavy machinery. Temperature of oil in the hydraulic system changes viscosity and thickness of oil film. They have a bad effect to performance and lubrication of hydraulic machinery, so it is important to know exactly the heat exchanging efficiency of oil cooler for controlling oil temperature. But most Korean manufacturers do not have test equipment for oil cooler, so they cannot carry out the efficiency test of oil cooler and it is impossible to verify its performance. This paper includes information of construction of necessary utilities for oil cooler test and design and manufacture of test equipment. One can select the optimum product by obtaining performance data through tests of various kinds of oil coolers. And also the paper developed a program which can be easily used for design of 2D and 3D drawings of oil cooler.

  • PDF

Design and Implementation of Lamp-Heated LPCVD System (램프 가열 방식 LPCVD 장비의 설계 및 제작)

  • Ha, Yong-Min;Kim, Tae-Sung;Kim, Choong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.299-303
    • /
    • 1991
  • A lamp heated LPCVD equipment has been made. Wafer is heated by an array of fifteen tungsten halogen lamps above the front side of a wafer and pyrometer views the back side of the wafer through $CaF_2$ window. Reactor which consisits of a quartz window and a water cooled-stainless steel plate can be evacuated to $5{\times}10^{-3}$ torr with a rotary vane pump. By pyrolysis of $SiH_4$ at about $600^{\circ}C$, polysilicon has been formed on the silicon dioxide film. The measured results show that thickness nonuniformity is 15% and temperature nonuniformity is 1.1%. Because activation energy of pyrolysis of $SiH_4$ is very high, about 1.8eV, small temperature variation will induce large thickness nonuniformity. The main cause of temperature nonuniformity is unsymmetry of lamp power and an unbalanced cooling structure. Charls & Evans' SIMS result shows that the oxygen content in the deposited polysilicon is comparable to that of silicon substrate but carbon content is ten times higher.

  • PDF

Power Plant Fault Monitoring and Diagnosis based on Disturbance Interrelation Analysis Graph (교란들의 인과관계구현 데이터구조에 기초한 발전소의 고장감시 및 고장진단에 관한 연구)

  • Lee, Seung-Cheol;Lee, Sun-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.9
    • /
    • pp.413-422
    • /
    • 2002
  • In a power plant, disturbance detection and diagnosis are massive and complex problems. Once a disturbance occurs, it can be either persistent, self cleared, cleared by the automatic controllers or propagated into another disturbance until it subsides in a new equilibrium or a stable state. In addition to the Physical complexity of the power plant structure itself, these dynamic behaviors of the disturbances further complicate the fault monitoring and diagnosis tasks. A data structure called a disturbance interrelation analysis graph(DIAG) is proposed in this paper, trying to capture, organize and better utilize the vast and interrelated knowledge required for power plant disturbance detection and diagnosis. The DIAG is a multi-layer directed AND/OR graph composed of 4 layers. Each layer includes vertices that represent components, disturbances, conditions and sensors respectively With the implementation of the DIAG, disturbances and their relationships can be conveniently represented and traced with modularized operations. All the cascaded disturbances following an initial triggering disturbance can be diagnosed in the context of that initial disturbance instead of diagnosing each of them as an individual disturbance. DIAG is applied to a typical cooling water system of a thermal power plant and its effectiveness is also demonstrated.

Cooling Performance Evaluation study of Dual-Source Heat Pump System (2중열원 히트펌프시스템의 냉방성능예측에 관한 연구)

  • Noh, Kwan-Jong;Kim, Ji-Young;Kang, Eun-Chul;Park, Hye-Moon;Lee, Euy-Joon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • A steady-state simulation model for Dual-Source Heat Pump(DSHP) of 8RT was presented. A Dual-Source Heat Pump(DSHP) has been designed to make up for the conventional air source heat pumps. The performance evaluation has been conducted under internal standard test conditions such as ISO-13256-1 and KS C 9306. However, as test conditions such as entering water, indoor and outdoor air conditions could not be controlled to satisfy the standard test conditions in outdoor tests, a series of experiments have been conducted with the actual test conditions. Then, computer models for DSHP could be used for the standard condition have developed using EES program. The model was developed from basic thermodynamic principles and heat transfer relations. Most of the parameters were obtained with EES from the actual catalog data. The simulation results were in good agreement with the experiments.

  • PDF

PRELIMINARY STUDY ON COMPOSTING OF THE CATTLE MANURE AND RICE HULLS MIXTURES BY NEGATIVE AERATION

  • Park, K. J.;J. H. Hong;Park, M. H.;Park, W. C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.777-783
    • /
    • 2000
  • Composting by negative aeration is a reasonable proposition to control odor generated during composting process. Cattle manure and rice hulls mixtures were composted in a bin composting system by negative aeration. Continuous(CA) and intermittent(IA) aeration methods were applied to analyze the composting characteristics. The composting temperature and the ammonia emission during composting were investigated according to the aeration methods. The main problem for the negative aeration was the generation of condensate in the suction line of blower. The quantity of condensate was significant for continuous aeration. The aeration method should be modified to escape from the cooling effect of continuous aeration at the initial stage of composting. It took a longer time to finish a composting for intermittent aeration on account of lower aeration. It was concluded that the composting by negative aeration could be accomplished by either continuous or intermittent aeration method if the flow rate would be controlled more efficiently and the water vapor in suction line of blower could be removed effectively. Ammonia emission increased up to maximum value of 675ppm for continuous aeration while 300ppm for intermittent aeration. However, the cumulative value of ammonia emission was larger for intermittent aeration than for continuous aeration.

  • PDF

EXPERIMENTAL STUDY ON MEASUREMENT OF EMISSIVITY FOR ANALYSIS OF SNU-RCCS

  • CHO YUN-JE;KIM MOON OH;PARK GOON-CHERL
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.99-108
    • /
    • 2006
  • SNU-RCCS is a water pool type RCCS (Reactor Cavity Cooling System) developed for VHTR (Very High Temperature Reactor) application by SNU (Seoul National University). Since radiation heat transfer is the major process of passive heat removal in a RCCS, it is important to determine the precise emissivity of the reactor vessel. Review studies have used a constant emissivity in the passive heat removal analysis, even though the emissivity depends on many factors such as temperature, surface roughness, oxidation level, wavelength, direction, atmosphere conditions, etc. Therefore, information on the emissivity of a given material in a real RCCS is essential in order to properly analyze the radiation heat transfer in a VHTR. The objectives of this study are to develop a method for compensation of the factors affecting the emissivity measurement using an infrared thermometer and to estimate the true emissivity from the measured emissivity via the developed method, especially in the SNU-RCCS environment. From this viewpoint, we investigated factors such as the attenuation effect of the window, filling gas, and the effect of background radiation on the emissivity measurements. The emissivity of the vessel surface of the SNU-RCCS facility was then measured using a sight tube. The background radiation was subsequently removed from the measured emissivity by solving a simultaneous equation. Finally, the calculated emissivity was compared with the measured emissivity in a separate emissivity measurement device, yielding good agreement with the emissivity increase with vessel temperature in a range of 0.82 to 0.88.

Study on long-term monitoring of heat exchanger installed in the tunnel lining (터널 라이닝 내부에 설치한 열교환기의 현장모니터링 연구)

  • Lee, Chulho;Park, Moonseo;Choi, Hangseok;Sohn, Byunghu;Jeoung, Jaehyeung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.195.1-195.1
    • /
    • 2011
  • This paper presents an experimental study on a new potential geothermal energy source obtained from tunnel structures. An "energy textile", which is a textile-type ground heat exchanger, was fabricated between a shotcrete layer and a guided drainage geotextile in the tunnel lining system. To examine the long-term thermal behavior of the energy textile, the difference in temperatures of the inlet and outlet fluid circulating through the heat exchange pipe within the energy textile was monitored using a constant-temperature water bath. Daily heat exchange rate of the energy textile during cooling operation was estimated from the measured temperatures of the inlet and outlet fluid through the energy textile. The air and ground temperature was also continuously monitored. The operation of the energy textile as a ground heat exchanger was simulated using a 3D numerical CFD model (Fluent). The thermal conductivity of shotcrete and concrete lining components and temperature variation of air in the tunnel were incorporated in the model. The numerical analysis shows a good agreement with the long-term monitoring result.

  • PDF

Minimization of Friction and Wear Damage of Marine Structures by Using the Advanced Anti-corrosive Composite Materials (첨단복합방식재를 이용한 각종 선박구조물의 마찰마모손상의 최소화)

  • 김윤해;김진우
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.15-26
    • /
    • 1999
  • The marine structures with sea water cooling system always expose to the oceanic atmosphere. Therefore, the protection of the equipments is very important. To investigate the effectiveness of advanced composite materials for the application in offshore environments, the tensile test, hardness test, undercutting property test, permeance test and the friction and wear test were carried out by using various applicable coating materials. The main results obtained can be summarized as follows; 1. The micro-hardness of the Archcoat 502B showed the highest value. 2. The coefficient of friction of the Rigspray coating at the speed of 2.21m/sec showed the lowest value, and that of the Archcoat 502B coating at 1.08m/sec and 0.18m/sec indicated the lowest values. 3. The wear mass at the speed of 0.18m/sec and 1.08m/sec in dry condition showed the smallest values. 4. The Archcoat 502B coating is fitted to the dynamic instruments in the range of low speed and middle speed. Rigspray coating is fitted to the dynamic instruments in the range of high speed. 5. The wear mass of five kinds of coating materials at the range of low speed was very small, and those of the Archcoat S02B, Archcoat 402B and Rigspray coating at high speed range were quitely smaller than those of the Modified Epoxy and Tar Epoxy.

  • PDF

The Introduction of Polychaetes Hydroides elegans (Haswell), Polydora limicola Annenkova, and Pseudopotamilla occelata Moore to the Northwestern Part of the East Sea

  • Bagaveeva, E.V.;Zvyagintsev, A.Yu.
    • Ocean and Polar Research
    • /
    • v.22 no.1
    • /
    • pp.25-36
    • /
    • 2000
  • The polychaeta fauna of the benthos and fouling of the northwestern part of the East Sea was studied during the period of 1971-1998. Three introduced species of polychaetes: Hydorides elegans (Haswell), Polydora limicola Annenkova, and Pseudopotamilla occelata Moore were found. H. elegans was discovered only on the artificial surfaces in Golden Horn Inlet (port Vladivostok), where this species may occur because of hermal pollution due to the discharge of warm waters of the water cooling system of Thermal-Electric Power Station-2 (TEPS-2) in Vladivostok which has been in function since 1971. The abundant population of H. elegans exists in the bay throughout the year and is capable of reproduction. The biomass of H. elegans may reach several $kg/m^2$ in August-September. P. limicola was found at the same time in the fouling of hydrotechnical structures of Vladivostok, Nakhodka, Holmsk and Uglegorsk ports with a biomass of $1-3kg/m^2$. Slow introduction of P. limicola occurs by coastal sail ships at present. The invasion of P. occelata into Peter the Great Bay may be an example of introduction and subsequent naturalization, which produced considerable changes in the structure of benthic communities. The three species of polychaetous sessile organisms and their invasion occurred by ocean and coasters sea-going ships (unintentional transport vectors). H. elegans and P. occelata were most probably transported to the northwestern part of the East Sea from Japan, and P.

  • PDF

THE CORRELATION OF PRESSURE DROP FOR SURFACE ROUGHNESS AND CURVATURE RADIUS IN A U-TUBE (표면 조도와 곡률 반경에 대한 U-자관 압력 손실의 상관관계)

  • Park, J.H.;Chang, S.M.;Lee, S.Y.;Jang, G.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.39-46
    • /
    • 2015
  • In this research, we studied the pressure drop affecting on the internal surface roughness and the curvature radius of a U-tube, which is used for the cooling system in PWR(Pressurized Water Reactor). Using ANSYS-FLUENT, a commercial code based on CFD(Computational Fluid Dynamics) technique, we compared a Moody chart with the Darcy friction factor changed by a range of various surface roughness and Reynolds numbers of a straight pipe model. We studied the effect giving variation about a range of various surface roughness and the curvature radius of the full scale U-tube model. The material of the heat transfer tube is Inconel 690 used in the steam generator. We compared the velocity distribution of selected 4 locations, and derived the correlation between the surface roughness and the pressure drop for the U-tube of each representative curvature radius using the linear regression method.