• Title/Summary/Keyword: Water content calibration

Search Result 82, Processing Time 0.022 seconds

APPLICATION OF MERGED MICROWAVE GEOPHYSICAL OCEAN PRODUCTS TO CLIMATE RESEARCH AND NEAR-REAL-TIME ANALYSIS

  • Wentz, Frank J.;Kim, Seung-Bum;Smith, Deborah K.;Gentemann, Chelle
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.150-152
    • /
    • 2006
  • The DISCOVER Project (${\underline{D}}istributed$ ${\underline{I}}nformation$ ${\underline{S}}ervices$ for ${\underline{C}}limate$ and ${\underline{O}}cean$ products and ${\underline{V}}isualizations$ for ${\underline{E}}arth$ ${\underline{R}}esearch$) is a NASA funded Earth Science REASoN project that strives to provide highly accurate, carefully calibrated, long-term climate data records and near-real-time ocean products suitable for the most demanding Earth research applications via easy-to-use display and data access tools. A key element of DISCOVER is the merging of data from the multiple sensors on multiple platforms into geophysical data sets consistent in both time and space. The project is a follow-on to the SSM/I Pathfinder and Passive Microwave ESIP projects which pioneered the simultaneous retrieval of sea surface temperature, surface wind speed, columnar water vapor, cloud liquid water content, and rain rate from SSM/I and TMI observations. The ocean products available through DISCOVER are derived from multi-sensor observations combined into daily products and a consistent multi-decadal climate time series. The DISCOVER team has a strong track record in identifying and removing unexpected sources of systematic error in radiometric measurements, including misspecification of SSM/I pointing geometry, the slightly emissive TMI antenna, and problems with the hot calibration source on AMSR-E. This in-depth experience with inter-calibration is absolutely essential for achieving our objective of merging multi-sensor observations into consistent data sets. Extreme care in satellite inter-calibration and commonality of geophysical algorithms is applied to all sensors. This presentation will introduce the DISCOVER products currently available from the web site, http://www.discover-earth.org and provide examples of the scientific application of both the diurnally corrected optimally interpolated global sea surface temperature product and the 4x-daily global microwave water vapor product.

  • PDF

DEVELOPMENT OF PORTABLE NEAR INFRARED SYSTEM FOR HUMAN SKIN MOISTURE

  • Woo, Young-Ah;Ahn, Jhii-Weon;Kim, Hyo-Jin
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3115-3115
    • /
    • 2001
  • In this study, portable near infrared (NIR) system was newly integrated with a photodiode array detector, which has no moving parts and this system has been successfully applied for evaluation of human skin moisture. The good correlation between NIR absorbance and absolute water content of separated hairless mouse skin was, in vitro, showed depending on the water content (7.42-84.94%) using this portable NIR system. Partial least squares (PLS) regression was used for the calibration with the 1100-1650 nm wavelength range. For the practical use for the evaluation of human skin based on moisture, PLS model for human skin moisture was, in vivo, developed using the portable NIR system based on the relative water content values of stratum corneum from the conventional capacitance method. The PLS model showed a good correlation. This study indicated that the portable NIR system could be a powerful tool for human skin moisture, which may be much more stable to environmental conditions such as temperature and humidity, compared to conventional methods. Furthermore, in order to confirm the performance of newly integrated portable NIR system, scanning type conventional NIR spectrometer was used in the same experiments and the results were compared.

  • PDF

Measurement of Soil Water Content by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양함수량의 측정)

  • Park, Jae-Hyeon;Yun, Seong-Yong;Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.587-595
    • /
    • 1997
  • Experimental study on unsaturated flow in the soil is important to understand the characteristics of the water flow. Measurement of unsteady-state water movement using the traditional equipment (e.g. tensiometer) has a problem that requires relatively a long response time. In this study a quick measurement method of soil water flow using TDR is introduced. TDR consists of an electronic function generator which generates a squared wave, and an oscilloscope which catches the reflected wave. The wave is reflected where both the impedance of the transmission line and the propagation velocity are changed. The water content can be obtained from the travel time measured by means of TDR because the dielectric constant is affected by the change of soil water content. From the result of TDR calibration. TDR measurement error for the oven dried soil was found to be less than 3.5%. This supports that TDR is a viable technique to measure the unsteady-state water movement.

  • PDF

Determination of Human Skin Moisture in the Near-Infrared Region from 1100 to 2200 nm by Portable NIR System (1100∼2200 nm 파장 영역의 휴대용 근적외선 분광분석기를 이용한 사람피부의 수분측정)

  • 안지원;서은정;우영아;김효진
    • YAKHAK HOEJI
    • /
    • v.47 no.3
    • /
    • pp.148-153
    • /
    • 2003
  • Skin moisture is an important factor in skin health. Measurement of moisture content can provide diagnostic information on the condition of skin. In this study, a portable near-infrared (NIR) system was newly integrated with a photo diode array detector that has no moving parts, and this system has been successfully applied for the evaluation of human skin moisture. Diffuse reflectance spectra were collected and transformed to absorbance using 1 nm step size over the wavelength range of 1100 nm to 2200 nm. Partial least squares regression (PLSR) was applied to develop a calibration model. For practical use for the evaluation of human skin moisture, the PLS model for human skin moisture was developed in vivo using the portable NIR system on the basis of the relative water content values of stratum corneum from the conventional capacitance method. The PLS model showed a good correlation. The calibration with the use of PLS model predicted human moisture with a standard error of prediction (SEP) of 3.5 at 1120∼1730 nm range. This study showed the possibility of skin moisture measurement using portable NIR system.

The Effects of Improvement in Clay with High Moisture Contents Using the Filter Type Vacuum Consolidation Method (필터형 진공압밀공법을 이용한 고함수비 점토지반의 개량효과)

  • Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.55-60
    • /
    • 2010
  • This study are carried out to an lab model tests to develop a construction method that solidifies high-water content cohesive soil by using filter type drain and vacuum pressure, and that stabilizes the ground by accelerating horizontal drain at incline or in tunnel. The calibration chamber was designed within length of 1.5m and height of 50cm, and a drainage hole for preconsolidation, a switchgear and a piezometer were installed at the bottom part of the chamber. Also, a settlement gage was installed at the top part so that it can measure the settlement by time. The calibration ground basis was made in a form of thin layer from kaolinite and bentonite in 9:1 ratio stirred at 130% water content condition. A filter type drain was installed at chamber center and a vacuum pressure of 0.8MPa was applied through a hose linked to the cap at the top part, then, the settlement was measured in every 1 hour interval. After experiment, the moisture contents were measured by position, then, verified the increase of solidity of the ground through a triaxial compression test on undisturbed profile. After 11 days from the effective date, it was observed that the settlement decreased by maximum 35mm and the water content ratio was reduced by 38% at most while the solidity of the ground increased by 5~8 times greater than before preconsolidation.

Uncertainty in Determination of Menthol from Mentholated Cigarette (담배 중 멘톨 분석에 대한 불확도 측정)

  • 장기철;이운철;백순옥;한상빈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • This study was carried out to evaluate the uncertainty in the analysis of menthol content from the mentholated cigarette. Menthol in the sample cigarette was extracted with methanol containing an anethole as an internal standard, and then analyzed by gas chromatography. As the sources of uncertainty associated with the analysis of menthol, were the following points tested, such as the weighing of sample, the preparation of extracting solution, the pipetting of extracting solution into the sample, the preparation of standard solution, the precision of GC injections for standard & sample solution, the GC response factor of standard solution, the reproducibility of menthol analysis, and the determination of water content in tobacco, etc. For calculating the uncertainties, type A of uncertainty was evaluated by the statistical analysis of a series of observation, and type B by the information based on supplier's catalogue and/or certificated of calibration. Sources of uncertainty were subsequently included and mathematically combined with the uncertainty arising from the assessment of accuracy to provide the overall uncertainty. It was shown that the main source of uncertainty came from the errors in the reproducibility of menthol and water determination, the purity of menthol reference material in the preparation of standard solution, and the precision of GC injections for sample solution. The errors in sample weighing and volume measurement contributed relatively little to the overall uncertainty. The expanded uncertainty in the mentholated cigarettes, Korean and American brand, at 0.95 level of statistical confidence was $\pm$0.06 and $\pm$0.07 mg/g for a menthol content of 1.89 and 2.32 mg/g, respectively.

  • PDF

Measurement of Soil Organic Matter Using Near Infra-Red Reflectance (근적외선 반사도를 이용한 토양 유기물 함량 측정)

  • 조성인;배영민;양희성;최상현
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.475-480
    • /
    • 2001
  • Sensing soil organic matter is crucial for precision farming and environment friendly agriculture. Near infra-red(NIR) was utilized to measure the soil organic matter. Multivariate calibration methods, including stepwise multiple linear regression(MLR), principal components recession(PCR) and partial least squares regression(PLS), were applied to soil spectral reflectance data to predict the organic matter content. The effect of soil particle size and water content was studied. The range of soil organic matter contents was from 0.5 to 11%. Near infrared (NIR) region from 700 to 2,500nm was applied. For uniform soil particle size, result had good correlation (R$\^$2/ = 0.984, standard error of prediction= 0.596). The effect of soil particle size could be eliminated with 1st order derivative of the NIR signal. However. moist soil had a little lower correlation. R$\^$2/ was 0.95 and standard error of prediction was 0.94% using the PLS method. The results showed the possibility of soil organic matter measurement using NIR reflectance on the field.

  • PDF

Determination of Water Content in Ethanol by Miniaturized Near-Infrared (NIR) System

  • Cho, Soo-Hwa;Chung, Hoe-Il;Woo, Young-Ah;Kim, Hyo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.115-118
    • /
    • 2005
  • The miniaturized NIR (Near-infrared) spectrometer has been utilized for the determination of water content (1-19% range) in ethanol that is the most popular organic solvent in pharmaceutical industries. It has many potential capabilities that can replace the conventional analyzers especially for the on-line measurement since it is compact, versatile and cost-effective. By using two dimensional (2D) correlation spectroscopy, it was preliminarily investigated to find any unforeseen spectral distortion among the spectra collected from the miniaturized spectrometer. The 2D study revealed that the spectral variation clearly followed the variation of water concentration without any spectral distortion or abnormality. PLS (Partial Least Squares) was employed to build the calibration model and the resulting prediction performance was acceptable and stable over several days. Even though the miniaturized NIR system was evaluated to fairly simple chemical matrix, the overall study demonstrates the sufficient feasibility for diverse practical and industrial applications.

Development of a soil total carbon prediction model using a multiple regression analysis method

  • Jun-Hyuk, Yoo;Jwa-Kyoung, Sung;Deogratius, Luyima;Taek-Keun, Oh;Jaesung, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.891-897
    • /
    • 2021
  • There is a need for a technology that can quickly and accurately analyze soil carbon contents. Existing soil carbon analysis methods are cumbersome in terms of professional manpower requirements, time, and cost. It is against this background that the present study leverages the soil physical properties of color and water content levels to develop a model capable of predicting the carbon content of soil sample. To predict the total carbon content of soil, the RGB values, water content of the soil, and lux levels were analyzed and used as statistical data. However, when R, G, and B with high correlations were all included in a multiple regression analysis as independent variables, a high level of multicollinearity was noted and G was thus excluded from the model. The estimates showed that the estimation coefficients for all independent variables were statistically significant at a significance level of 1%. The elastic values of R and B for the soil carbon content, which are of major interest in this study, were -2.90 and 1.47, respectively, showing that a 1% increase in the R value was correlated with a 2.90% decrease in the carbon content, whereas a 1% increase in the B value tallied with a 1.47% increase in the carbon content. Coefficient of determination (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) methods were used for regression verification, and calibration samples showed higher accuracy than the validation samples in terms of R2 and MAPE.

Quantification of Rockwool Substrate Water Content using a Capacitive Water Sensor (정전용량 수분센서의 배지 함수량 정량화)

  • Baek, Jeong-Hyeon;Park, Ju-Sung;Lee, Ho-Jin;An, Jin-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.27-36
    • /
    • 2021
  • A capacitive water sensor was developed to measure the capacitance over a wide part of a substrate using an insulated electrode plate (30 cm × 10 cm) with copper and Teflon attached on either side of the substrate. This study aimed to convert the capacitance output obtained from the condenser-type capacitance sensor into the substrate water content. The quantification experiment was performed by measuring the changes in substrate water weight and capacitance while providing a nutrient solution and by subsequently comparing these values. The substrate water weight and capacitance were measured every 20 to 30 seconds using the sensor and load cell with a software developed specifically for this study. Using a curve-fitting program, the substrate water content was estimated from the output of the capacitance using the water weight and capacitance of the substrate as variables. When the amount of water supplied was increased, the capacitance tended to increase. Coefficient of variation (CV) in capacitance according to the water weight in substrate was greater with the 1.0 kg of water weight, compared with other weights. Thus, the fitting was performed with higher than 1.0 kg, from 1.7 to 6.0 kg of water weight. The correlation coefficient between the capacitance and water weight in substrate was 0.9696. The calibration equation estimated water content from the capacitance, and it was compared with the substrate water weight measured by the load cell.