• Title/Summary/Keyword: Water channels

Search Result 649, Processing Time 0.022 seconds

Visualization of Water Distribution in a Polymer Electrolyte Fuel Cell Using an X-ray Imaging Technique (X선 영상기법을 이용한 고분자 전해질형 연료전지의 수분분포 가시화)

  • Lim, Nam-Yun;Park, Gu-Gon;Kim, Chang-Soo;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.33-38
    • /
    • 2007
  • Water management in polymer electrolyte fuel cell (PEFC) has been receiving large attention as an important issue in practical applications. Proper water management is vital to achieve high performance and durability of PEFC. In this study, an X-ray imaging technique was employed to visualize the water distribution in a PEFC quantitatively. X-ray images of the PEFC components with and without water were distinguished clearly. From the visualized X-ray images, we could evaluate the water distribution in the region between separator and gas diffusion layer (GDL) quantitatively. In addition, the contact angle of water in the micro-channels was also clearly visualized.

Investigation of the Hydraulic Stability of Agricultural Drainage Channels Installed Water Purification Materials by using Flow-3D (Flow-3D를 활용한 수질정화체가 설치된 농업용 배수로의 안정성 조사)

  • Kim, Sun-Joo;Park, Ki-Chun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.3-9
    • /
    • 2007
  • In this study, the effect of the purification materials is analyzed and tested by Flow 3D and Hydraulic model test. Three dimension numerical analysis led from the research that sees abnormal form and the size back of the water purification material conferred the flowing water conduct inside the test channel against the test condition. Comparison it analyzed the flux distribution, a water depth of the channel which establishes the water purification materials the cross section, an interval of the water purification material, a conference with general channel, it change executed. As a result, the cross section ratio of the purification materials against and a flux change from the test which it sees. The interval of the purification materials in order to prevent three dimension that follows in decrease of increase and flux must decide an interval.

Improvement of QUAL2E Model using Nonuniform Flow Analysis (부등류해석을 이용한 QUAL2E 모형의 개선)

  • Kim, Sang Ho;Choi, Hyun Sang
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1144-1150
    • /
    • 2006
  • Recently, as water pollution accidents in rivers have increased, there is an increased interest in water quality forecast with accurate simulation. QUAL2E model, widely used for water quality analysis, uses the same hydraulic characteristics, such as depth and velocity, in a reach. The flow of the river is changed by various hydraulic constructions or by topography in a real river channel. In this study, a hydraulic connection module is developed to consider flow variations of river channels in QUAL2E model. The module uses the simulations results of non-uniform flow of a 1-D hydraulic model such as DWOPER or HEC-RAS. The improved QUAL2E model with this module was applied to a downstream section of Paldang Dam on the Han River. The results show the variation of water quality very well in a reach where flowing vary abruptly, like the Jamsil submerged weir.

Numerical Study of Land/Channel Flow-Field Optimization in Polymer Electrolyte Fuel Cells (PEFCs) (II) - The Effects of Land/Channel Flow-Field on Temperature and Liquid Saturation Distributions - (고분자전해질형연료전지의 가스 채널 최적화를 위한 수치적 연구 (II) - 가스 채널 치수가 온도와 액체포화 분포에 미치는 영향성 -)

  • Ju, Hyun-Chul;Nam, Jin-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.688-698
    • /
    • 2009
  • Using the multi-dimensional, multi-phase, nonisothermal Polymer Electrolyte Fuel Cell (PEFC) model presented in Part I, the effects of land/channel flow-field on temperature and liquid saturation distributions inside PEFCs are investigated in Part II. The focus is placed on exploring the coupled water transport and heat transfer phenomena within the nonisothermal and two-phase zone existing in the diffusion media (DM) of PEFCs. Numerical simulations are performed varying the land and channel widths and simulation results reveal that the water profile and temperature rise inside PEFCs are considerably altered by changing the land and channel widths, which indicates that oxygen supply and heat removal from the channel to the land regions and liquid water removal from the land toward the gas channels are key factors in determining the water and temperature distributions inside PEFCs. In addition, the adverse liquid saturation gradient along the thru-plane direction is predicted near the land regions by the numerical model, which is due to the vapor-phase diffusion driven by the temperature gradient in the nonisothermal two-phase DM where water evaporates at the hotter catalyst layer, diffuses as a vapor form and then condenses on the cooler land region. Therefore, the vapor phase diffusion exacerbates DM flooding near the land region, while it alleviates DM flooding near the gas channel.

A study on the rules and the principles of the six-drugs mixing forming the prescription of Yukmijihwanghuan(六味地黃丸) (육미지황환(六味地黃丸)의 제방원칙(制方原則) 및 배합원리(配合原理)에 관(關)한 연구(硏究))

  • Kim, Yoon-Hyeon;Yoon, Chang-Yeol
    • Journal of Korean Medical classics
    • /
    • v.23 no.6
    • /
    • pp.1-14
    • /
    • 2010
  • The conclusions after studying the rules and the principles of the six-drugs mixing forming the prescription of Yukmijihwanghuan(六味地黃丸) are as follows: 1. Yukmijihwanghuan cares for the three viscera; the liver, the spleen and the kidney and the three entrails; the urinary bladder, the gall bladder, and the stomach and it strengthens them as well. The drug can be used mainly for the cure of the Three Yang Channels of Foot and the Three Yin Channels of Foot. 2. The three drugs of Yukmijihwanghuan; Rehmanniae Radix, Dioscoreae Rhizoma, Corni Fructus altogether has the tonifying effect and the other three; Alismatis Rhizoma, Moutan Cortex, Poria has the purging effect. The first three kinds of drugs tonifies and the last three kinds of drugs purges. While these two groups of drugs are pitted against each other, they also balance each other harmoniously increasing the curative effect(remedial[curative] value). 3. Yukmijihwanghuan cools off the lung which is under metal category, helps the spleen, an earth category to be strong. It also adds the Water Qi to the kidney so that it stabilizes the Fire Qi. 4. Yukmijihwanghuan helps the kidney strongly, helps the urine to be excreted well, cools down the Fire Qi and makes dry things wet. 5. Rehmanniae Radix, the principal drug of Yukmijihwanghuan and Corni Fructus, the minister drug of the medicine have a taste of thick and are materially heavy. The two drugs do the descending action that it tonifies Yin Qi and adds Essence of Life. The other ingredients of Yukmijihwanghuan; Moutan Cortex, Poria, Alismatis Rhizoma have effects on lowering the Fire Qi. If Fire Qi descends, then Water Qi ascends. Yukmijihwanghuan has an efficacy of lowering Fire Qi and increasing Water Qi.

Experimental Study on Seepage Losses in Earth Channel (흙 수로에 대한 삼수손실량 추정에 관한 실험적 연구)

  • 정하우;유한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2853-2877
    • /
    • 1973
  • Models of cross-sections and channels were made in order to measure seepage losses. Cross-sections were made of sand, sandy clay loam and loam, their thicknesses being 30cm and 40cm, respectively. Flow depths kept in the cross-sections were 4cm, 6cm, 8cm and 10cm. Straight and curved channel models were provided so as to measure seepage losses, when constant water depths maintained at the heads of the channels were 7.3cm and 5.7cm, respectively. The results obtained in this experiment are presented as follows: 1) A cumulative seepage loss per unit length at a point in the channel varies in accordance with time and flow depth. The general equation of cumulative seepage loss may be as follows(Ref. to Table V.25): $$q_{cum}=\int_{o}^aq(a)dt+\int_a^bq(b)dt+\int_b^tq(c)dt$$ 2) In case that the variation of water depth through the channel is slight, the total seepage loss may be computed by applying the following general equation: $$\={q}_{cum}{\cdot}x=\int_o^tq_{cum}\frac{{\partial}x}{{\partial}t}dt$$ 3) Because seepage loss varies considerably according to water depth in case that the variation of flow depth through the channel is great, seepage loss should be computed by taking account of the change of flow depth. 4) The relation between time and traveling distance of water flow may be presented as the following general equation(Ref. to Table V.29): $$x=pt^r$$ 5) The ratios of the seepage losses of the straight channel to the curved channel are 1:1.03 for a flow depth of 7.3cm and 1:1.068 for that of 5.7cm. 6) The ratios of the seepage losses occurring through the bottom to those through the inclined plane in the channel cross-section are 1:2.24 for a water depth of 8cm and 1:2.47 for a depth of 10cm in case that soil-layer is 30cm in thickness. Similarly, those ratios are 1:2.62 and 1:2.93 in case of a soil-layer thickness of 40cm(Ref. to Table V.5).

  • PDF

Derivation of Channel and Floodplain Width Regression Reflecting Korean Channel Shapes in SWAT Model (국내 하천 형상을 반영한 SWAT 모형 내 하천폭 및 홍수터폭 산정 회귀식 도출)

  • Lee, Hyeon-Gu;Han, Jeongho;Lee, Dongjun;Lim, Kyoung-Jae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.33-42
    • /
    • 2019
  • In this study, the channel and floodplain widths are indirectly measured for three different watersheds using satellite images to reflect the shape of Korean channels in the Soil and Water Assessment Tool (SWAT) model. For measuring the channel and floodplain widths, multiple satellite images were referred to ensure the widest width of certain points. In the single channel, the widths at the multiple points were measured. Based on the measured data, the regression equations were derived to estimate the channel and floodplain widths according to watershed areas. Applying these developed equations, this study evaluated the effect of the change of channel and floodplain widths on the SWAT simulation by comparing to the measured streamflow data. The developed equations estimated larger channel width and smaller floodplain compared with those calculated in the current SWAT model. As shown in the results, there was no considerable changes in the predicted streamflow using the current and developed equations. However, the flow velocity and channel depth calculated from the developed equations were smaller than those of the current equations. The differences were caused by the effect of different channel geometries used for calculating the hydraulic characteristics. The channel geometries also affected the water quality simulation in channels because the hydraulic characteristics calculated by the channel geometries are directly related to the water quality simulation. Therefore, application of the river cross-sectional regression equation reflecting the domestic stream shape is necessary for accurate water quantity / quality and water ecosystem simulation using hydrological model.

Channel Evaluation for Abandoned Channel Restoration Using Image Analysis Technique (영상분석기법을 이용한 구하도 복원 대상하천의 하도평가)

  • Hong, Il;Kang, Joon-Gu;Kwon, Bo-Ae;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • River is able to change by various environmental factors. In order to conduct restoration design of abandoned river channels, it is necessary to evaluate the river through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study analyzes the changes in past and present river channels and examines the applicability of river channel evaluation through image analysis using aerial photographs and 1918 year's map. Aerial photograph analysis was conducted by applying the image analysis method and GIS analysis method on Cheongmicheon. As a result of this analysis, we have quantitatively identified the form and size of abandoned channels, changes in the vertical-section and cross-section length of rivers, and micro-landform changes. More importantly, we verified that morphological changes in sandbars due to artificial straightening are important data in identifying the state of current river channels. In these results, although image analysis technique has limitations in two-dimensional information from aerial photographs, we were able to evaluate the changes in river channel morphology after artificial maintenance of the river.

Analysis of Tidal Channel Variations Using High Spatial Resolution Multispectral Satellite Image in Sihwa Reclaimed Land, South Korea (고해상도 다분광 인공위성영상자료 기반 시화 간척지 갯골 변화 양상 분석)

  • Jeong, Yongsik;Lee, Kwang-Jae;Chae, Tae-Byeong;Yu, Jaehyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2020
  • The tidal channel is a coastal sedimentary terrain that plays the most important role in the formation and development of tidal flats, and is considered a very important index for understanding and distribution of tidal flat sedimentation/erosion terrain. The purpose of this study is to understand the changes in tidal channels by a period after the opening of the floodgate of the seawall in the reclaimed land of Sihwa Lake using KOMPSAT high-resolution multispectral satellite image data and to evaluate the applicability and efficiency of high-resolution satellite images. KOMPSAT 2 and 3 images were used for extraction of the tidal channels' lineaments in 2009, 2014, and 2019 and were applied to supervised classification method based on Principal Component Analysis (PCA), Artificial Neural Net (ANN), Matched Filtering (MF), and Spectral Angle Mapper (SAM) and band ratio techniques using Normalized Difference Water Index (NDWI) and MF/SAM. For verification, a numerical map of the National Geographic Information Service and Landsat 7 ETM+ image data were utilized. As a result, KOMPSAT data showed great agreement with the verification data compared to the Landsat 7 images for detecting a direction and distribution pattern of the tidal channels. However, it has been confirmed that there will be limitations in identifying the distribution of tidal channels' density and providing meaningful information related to the development of the sedimentary process. This research is expected to present the possibility of utilizing KOMPSAT image-based high-resolution remote exploration as a way of responding to domestic intertidal environmental issues, and to be used as basic research for providing multi-platform-image-based convergent thematic maps and topics.