• Title/Summary/Keyword: Water channel work

Search Result 92, Processing Time 0.027 seconds

Experimental Study on Pressure Loss of Flow Parallel to Rod Bundle with Spacer Grid (지지격자가 있는 봉다발과 축방향으로 평행한 유동의 압력손실에 관한 실험적 연구)

  • Lee, Chi-Young;Shin, Chang-Hwan;Park, Ju-Yong;In, Wang-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.689-695
    • /
    • 2012
  • The friction factor in a rod bundle and the loss coefficient at a spacer grid were examined. As a test section, 25 smooth rods, 9.5 mm in diameter and 2000 mm in length, were prepared and installed in a $5{\times}5$ square array in a square channel. In this case, the P/D (Pitch-to-Diameter ratio) was 1.35. In this work, plain (i.e., no mixing vanes), split-vane, and hybrid-vane spacer grids were tested. In a bare rod bundle (i.e., no spacer grid), the measured friction factors were in good agreement with the previous correlations. Among the spacer grids tested, the hybrid-vane spacer grid presented the largest friction factor in the rod bundle and loss coefficient. This may be because of the flow pattern change induced by large relative plugging of the flow cross section and mixing vane geometry. At Re=$5{\times}10^5$, the predicted loss coefficients of plain, splitvane, and hybrid-vane spacer grids were approximately 0.79, 0.80, and 0.88, respectively.

A Study on Mathematical Model of Manoeuvring Motion of Manta-type Unmanned Undersea Vehicle at Large Attack Angles (Manta형 무인잠수정의 대각도 받음각을 갖는 조종운동 수학모델에 관한 연구)

  • Bae, Jun-Young;Sohn, Kyoung-Ho;Kim, June
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.328-341
    • /
    • 2010
  • The authors adopt the Unmanned Undersea Vehicle(UUV), which has taken the shape of manta(Sohn et al. 2006). They call here it Manta-type Unmanned Undersea Test Vehicle(MUUTV). MUUTV is designed with the similar concept of UUV called Manta Test Vehicle(MTV), which was originally built by the Naval Undersea Warfare Center, USA(Lisiewicz and French 2000, Sirmalis et al. 2001, U.S. Navy 2004). The present study deals with evaluation of extreme motion of MUUTV at large attack angles. Extreme motion contains, for example, rising and depth change due to operation of hovering thrusters attached to MUUTV, lateral motion due to ocean current applied to MUUTV at low advance velocity, and so on. Numerical simulation technique has been utilized. The previous mathematical model on manoeuvring motion of MUUTV(Bae et al. 2009a) is basically adopted. Based on the results of present model experiment on extreme motion, the mathematical model is revised and supplemented in order to describe extreme motion. The hydrodynamic derivatives related to extreme motion are obtained from present model experiment and the other derivatives are referred to previous work(Bae et al. 2009a).

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Three Dimensional Vortex Behavior of LEX Delta Wing by Dynamic Stereo PIV (Dynamic Stereo PIV에 의한 델타형 날개에서의 3차원 와류 유동에 관한 연구)

  • Lee Hyun;Kim Mi-Young;Choi Jang-Woon;Choi Min-Seon;Lee Young-Ho
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.39-42
    • /
    • 2003
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modern air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras$(1280pixel\times1024pixel)$ were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

Pressure Drop due to Friction in Small Rectangular Channel (미소 사각 채널에서의 마찰 압력 강하)

  • Lim, Tae-Woo;Choi, Jae-Hyuk;Kim, Jun-Hyo;Choi, Yong-Suk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.5
    • /
    • pp.461-467
    • /
    • 2012
  • An experimental study was carried out to measure frictional pressure drop in flow boiling to deionized water in a microchannel having a hydraulic diameter of $500{\mu}m$. Tests were performed in the ranges of heat fluxes from 100 to $400kW/m^2$, vapor qualities from 0 to 0.2 and mass fluxes of 200, 400 and $600kg/m^2s$. The frictional pressure drop during flow boiling is predicted by using two models; the homogeneous model that assumes equal phase velocity and the separate flow model that allows a slip velocity between two phases. From the experimental results, it is found that the two phase multiplier decreases with an increase in mass flux. Measured data of pressure drop are compared to a few available correlations proposed for macroscale and mini/microscale. The homogeneous model well predicted frictional pressure drop within MAE of 29.4 % for the test conditions considered in this work.

An Experiment on Flow Simulation Depending on Opening Configuration of Weir Using a Numerical Model (수치모형을 이용한 보의 개방구성에 따른 흐름모의 실험)

  • Kang, Tae Un;Jang, Chang-Lae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.3
    • /
    • pp.218-226
    • /
    • 2020
  • This study investigated that the numerical experiment for analysis on free overtopping flow by a weir of levee type, as the first stage of the development of a numerical technique for prediction methodology based on a numerical model. Using 2-dimensional flow models, Nays2DH, we conducted numerical simulations based on existing experimental data to compare and verify the models. We firstly discussed the numerical reproducibility for the discontinued flow by weir shape, and calibrated the computational flow through preprocessing of channel bed. Further, we carried out and compared the simulations for prediction on the overtopping flow by the number of weir gates. As a result of simulations, we found that the maximum flow velocity of downstream of weir increases when the number of weir gates increases under the same cross sectional area of flow. Through such results, this study could present basic data for hydraulic research to consider the water flow and sediment transport depending on weir operation in the future work.

A Study on the Unsteady Flow Characteristics of a Delta Wing by 3-D Stereo PIV (3-D Stereo PIV에 의한 비정상 델타윙 유동특성에 대한 연구)

  • Kim, Beom-Seok;Lee, Hyun;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1672-1677
    • /
    • 2004
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modem air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras($1280pixel{\times}1024pixel$) were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

An experimental study of a circular cylinder's two-degree-of-freedom motion induced by vortex

  • Kim, Shin-Woong;Lee, Seung-Jae;Park, Cheol-Young;Kang, Donghoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.330-343
    • /
    • 2016
  • This paper presents results of an experimental investigation of vortex-induced vibration (VIV) of a flexibly mounted and rigid cylinder with two-degrees-of-freedom with respect to varying ratio of in-line natural frequency to cross-flow natural frequency, $f^*$, at a fixed low mass ratio. Combined in-line and cross-flow motion was observed in a sub-critical Reynolds number range. Three-dimensional displacement meter and tension meter were used to measure dynamic responses of the model. To validate the results and the experiment system, x and y response amplitudes and ratio of oscillation frequency to cross-flow natural frequency were compared with other experimental results. It has been found that the higher harmonics, such as third and more vibration components, can occur on a certain part of steel catenary riser under a condition of dual resonance mode. In the present work, however, due to the limitation of a size of circulating water channel, the whole test of a whole configuration of the riser at an adequate scale for VIV phenomenon was not able to be conducted. Instead, we have modeled a rigid cylinder and assumed that the cylinder is a part of steel catenary riser where the higher harmonic motions could occur. Through the experiment, we have found that even though the cylinder was assumed to be rigid, the occurrence of the higher harmonic motions was observed in a small reduced velocity ($V_r$) range, where the influence of the in-line response is relatively large. The transition of the vortex shedding mode from one to another was examined by using time history of x and y directional displacement over all experimental cases. We also observed the influence of in-line restoring force power spectral density with $f^*$.

Compressible Simulation of Rotor-Stator Interaction in Pump-Turbines

  • Yan, Jianping;Koutnik, Jiri;Seidel, Ulrich;Hubner, Bjorn
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.315-323
    • /
    • 2010
  • This work investigates the influence of water compressibility on pressure pulsations induced by rotor-stator interaction (RSI) in hydraulic machinery, using the commercial CFD solver ANSYS-CFX. A pipe flow example with harmonic velocity excitation at the inlet plane is simulated using different grid densities and time step sizes. Results are compared with a validated code for hydraulic networks (SIMSEN). Subsequently, the solution procedure is applied to a simplified 2.5-dimensional pump-turbine configuration in prototype with different speeds of sound as well as in model scale with an adapted speed of sound. Pressure fluctuations are compared with numerical and experimental data based on prototype scale. The good agreement indicates that the scaling of acoustic effects with an adapted speed of sound works well. With respect to pressure fluctuation amplitudes along the centerline of runner channels, incompressible solutions exhibit a linear decrease while compressible solutions exhibit sinusoidal distributions with maximum values at half the channel length, coinciding with analytical solutions of one-dimensional acoustics. Furthermore, in compressible simulation the amplification of pressure fluctuations is observed from the inlet of stay vane channels to the spiral case wall. Finally, the procedure is applied to a three-dimensional pump configuration in model scale with adapted speed of sound. Normalized Pressure fluctuations are compared with results from prototype measurements. Compared to incompressible computations, compressible simulations provide similar pressure fluctuations in vaneless space, but pressure fluctuations in spiral case and penstock may be much higher.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.