• Title/Summary/Keyword: Water budget

Search Result 383, Processing Time 0.024 seconds

Drilling Gas Hydrate at Hydrate Ridge, ODP Leg 204

  • Lee Young-Joo;Ryu Byong-Jae;Kim Ji-Hoon;Lee Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.663-666
    • /
    • 2005
  • Gas hydrates are ice-like compounds that form at the low temperature and high pressure conditions common in shallow marine sediments at water depths greater than 300-500 m when concentrations of methane and other hydrocarbon gases exceed saturation. Estimates of the total mass of methane carbon that resides in this reservoir vary widely. While there is general agreement that gas hydrate is a significant component of the global near-surface carbon budget, there is considerable controversy about whether it has the potential to be a major source of fossil fuel in the future and whether periods of global climate change in the past can be attributed to destabilization of this reservoir. Also essentially unknown is the interaction between gas hydrate and the subsurface biosphere. ODP Leg 204 was designed to address these questions by determining the distribution, amount and rate of formation of gas hydrate within an accretionary ridge and adjacent basin and the sources of gas for forming hydrate. Additional objectives included identification of geologic proxies for past gas hydrate occurrence and calibration of remote sensing techniques to quantify the in situ amount of gas hydrate that can be used to improve estimates where no boreholes exist. Leg 204 also provided an opportunity to test several new techniques for sampling, preserving and measuring gas hydrates. During ODP Leg 204, nine sites were drilled and cored on southern Hydrate Ridge, a topographic high in the accretionary complex of the Cascadia subduction zone, located approximately 80km west of Newport, Oregon. Previous studies of southern Hydrate Ridge had documented the presence of seafloor gas vents, outcrops of massive gas hydrate, and a pinnacle' of authigenic carbonate near the summit. Deep-towed sidescan data show an approximately $300\times500m$ area of relatively high acoustic backscatter that indicates the extent of seafloor venting. Elsewhere on southern Hydrate Ridge, the seafloor is covered with low reflectivity sediment, but the presence of a regional bottom-simulating seismic reflection (BSR) suggests that gas hydrate is widespread. The sites that were drilled and cored during ODP Leg 204 can be grouped into three end-member environments basedon the seismic data. Sites 1244 through 1247 characterize the flanks of southern Hydrate Ridge. Sites 1248-1250 characterize the summit in the region of active seafloor venting. Sites 1251 and 1252 characterize the slope basin east of Hydrate Ridge, which is a region of rapid sedimentation, in contrast to the erosional environment of Hydrate Ridge. Site 1252 was located on the flank of a secondary anticline and is the only site where no BSR is observed.

  • PDF

Field Observations of Spatial Structure of Hydrodynamics Including Waves and Currents in the Haeundae Coast (해운대의 파랑 및 흐름 구조의 특성파악을 위한 현장 관측실험)

  • Do, Kideok;Yoo, Jeseon;Lee, Hee Jun;Do, Jong-Dae;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.4
    • /
    • pp.228-237
    • /
    • 2015
  • Field observations were conducted to collect hydrodynamic and morphological data, which are needed to account for mechanisms of bathymetry changes caused by physical forcings, in Haeundae beach. In order to quantitatively describe characteristics of wave transformations and current patterns in space in winter and summer, in-situ sensors for measuring waves and current profiles were installed at three locations in the cross-shore direction and also three locations in the along-shore direction. As for the results of wave measurements, waves with main direction from the east dominate in winter while waves are incident from the S and the ESE in summer. Analysis of current data reveals that currents over the study domain are considerably influenced by a pattern of tidal motions, thereby, mainly oscillating in the direction of tidal currents, i.e., east-west directions, in both winter and summer. Currents tend to be influenced by local bathymetry in the shallow water region, with the direction changed along the depth contours and the magnitude reduced as they approach the shoreline. The results analysed from the hydrodynamic data through this study can be further combined with the morphological and bathymetry data, leading to the quantification of seasonal sediment transport rates and sand budget changes.

Mapping Technique for Flood Vulnerable Area Using Surface Runoff Mechanism (지표유출메커니즘을 활용한 홍수취약지구 표출 기법)

  • LEE, Jae-Yeong;HAN, Kun-Yeun;KIM, Hyun-Il
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.181-196
    • /
    • 2019
  • Floods can be caused by a variety of factors, and the main cause of floods is the exceeding of urban drainage system or river capacity. In addition, rainfall frequently occurs that causes large watershed runoff. Since the existing methodology of preparing for flood risk map is based on hydraulic and hydrological modeling, it is difficult to analyse for a large area because it takes a long time due to the extensive data collection and complex analysis process. In order to overcome this problem, this study proposes a methodology of mapping for flood vulnerable area that considered the surface runoff mechanism. This makes it possible to reduce the time and effort required to estimate flood vulnerabilities and enable detailed analysis of large areas. The target area is Seoul, and it was confirmed that flood damage is likely to occur near selected vulnerable areas by verifying using 2×2 confusion matrix and ROC curve. By selecting and prioritizing flood vulnerable areas through the surface runoff mechanism proposed in this study, the establishment of systematic disaster prevention measures and efficient budget allocation will be possible.

The characteristics of nuclear powered submarine and the use of enriched uranium (원자력 추진 잠수함의 특성과 농축우라늄 사용)

  • Jang, Jun-Seop
    • Strategy21
    • /
    • s.41
    • /
    • pp.261-293
    • /
    • 2017
  • Nuclear power is a way of attaining an enormous amount of energy with relatively small amount of resources and after it has been introduced to the submarine since 1954, there are approximately 150 of nuclear powered submarine currently on a mission around the world. This is due to the maneuverability, mountability and covertness of nuclear submarines. However, there are other tasks, not only the high level of nuclear technology that are needed to be dealt with in order to construct nuclear powered submarine. The biggest task of all is to secure the enriched uranium. Accordingly, this research is about the way of enriching and securing the nuclear fuel that are used in the nuclear submarine with the characteristics, merits and demerits of the nuclear submarine. Due to the fact that the pressurized water reactor in South Korea is the reactor that was originally built for the development of nuclear powered submarine, many parts is designed to be suitable for the submarine propulsion. However, in order to apply this to submarine it is needed to consider additional requests such as the position of reactor, accident-coping system, radioactive covering, reactor output adjustment and ship's pitch and roll in order to apply this to submarine. Nuclear submarines have much higher speed based on the powerful propulsion in comparison with diesel-electric submarine and also have bigger loading area. Besides, there is no need to snorkel and they also have advantages in covertness with the multi-noise proof system. The nuclear technology in South Korea has seen the dramatic development since 1962 and in 1998 reached to the level that we have succeeded in the localization of nuclear plant and exported the world-class one-piece small-sized reactor (SMART) to UAE. To operate these reactors, we import the whole quantity of low-enriched uranium and having our own uranium enrich facility is not probable because of the budget and international regulations. With the ROK/US nuclear agreement revised on 2015 November, the enrichment of uranium that are available without special permission has changed up to 20%. According to the assumption that we use the 20% enrichment of Uranium on U.S. virginia class submarine, it is necessary to change the fuel after 11 years and it will cause additional cost of 1 billion dollars. But the replace period by the uranium's enrichment rate is not fixed so that it is possible to change according to the design of reactor. Therefore, I would like to make a suggestion on two types of design concepts of nuclear submarine that can be operated for 30 years without nuclear fuel change by using the 20% enriched uranium from ONNp.First of all, it is possible by increasing the size of reactor by 3 times and it results in the 1,000t increase of the weight. And secondly, it is by designing the one piece reactor to insert devices such as steam turbine, condenser into the inside of nuclear core like the Rubis class submarines of France.

The Evolution and Development Strategies of Event Tourism in the Case of Young-deung Festival at Chindo (이벤트관광의 성장과정과 활성화 방안 -전남 진도 영등제를 사례로-)

  • 추명희
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.103-134
    • /
    • 1998
  • This paper examined the evolution and development strategies of Young-deung Festival holding in Chindo since 1978. The Young-deung Festival is a representative event tourism in Korea. The water between Hoidong and Modo in Chindo, a small islet 2.8km off the coast, part to reveal a path 40m wide as a result of the moon influence on the tides. This phenomenon is called “young-deung-sal”on the Chindo. This event began on a small scale highlighting the treasury of traditional folkfore and shamanism peculiar to these islands, various cultural resources, and local place attraction such as young-deung-sal. But, in the early 1990s, with the introduction of systematic management and a variety of programs, the small village festival has steadily evloved in the scale aspects of the program, budget, profit, and the number of visitors participating in festival. In addition, the period of festival was prolonged for three days and visitors from other provinces have steadily increased, in particular visitors from Seoul and Gyoungkee have steadily increased. In order to develop the Young-deung Festival, the followings should be done: creation of local image through place attraction, private organization in supporting festival, adoption of management techniques for the local economic activites, and extension of linkage with tourists places around Chindo, target visitor marketing through a continuous visitor survey.

  • PDF

A Study on the Inflowing Pollution Load and Material Budgets in Hampyeong Bay (함평만의 유입오염부하량 및 물질수지에 관한 연구)

  • Kim, Jong-Gu;Jang, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, an analysis of the inflowing pollution load of the rivers in Hampyeong bay showed the average organic matter pollution loads of BOD, COD, and TOC to be 79.7 kg-BOD/day, 144.06 kg-COD/day, and 93.0 kg-TOC/day, respectively. The inflowing organic matter pollution load was the heaviest in Sonbul dike, followed by Jupo bridge and Yangman complex. With regard to season, the load characteristics were outstanding in July, the rainy period in the summer. The average inflowing pollution loads of nutrients were 20.9 kg-DIN/day, 17.1 kg-DIP/day, 148 kg-TN/day, and 37.4 kg-TP/day A comparison of the inflowing nutrients loads for each river showed the load to be the heaviest in Yangman complex, followed by Baegok bridge and Jupo bridge. In the experiment on the material budgets of Hampyeong bridge conducted using a box model, the detention time of fresh water was found to be 52.4 days, with the bay displaying the characteristics of a so dissolved inorganic nitrogen (DIN) in the nutrients material budgets, ${\Delta}DIN$ values were found to be negative, indicating the tendency of consumption and open sea leak by photosynthesis to be higher than the nitrogen that flowed in. As for dissolved inorganic phosphorus (DIP), ${\Delta}DIP$ showed positive values, indicating a tendency for accumulation as the supply through organic matter decomposition, elution load of sediments, and inflowing load of the river turned out to be higher than the consumption by phytoplankton and outflow to open sea.

A Study on the Effect of Large Coherent Structures to the Skin Friction by POD Analysis (적합직교분해(POD)기법을 사용한 난류 응집구조 거동에 관한 연구)

  • Shin, Seong-Yun;Jung, Kwang-Hyo;Kang, Yong-Duck;Suh, Sung-Bu;Kim, Jin;An, Nam-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • An experimental study in a recirculating water channel was carried out to investigate the effect of large coherent structures to the skin friction on a flat plate. Particle Image Velocimetry (PIV) technique was used to quantify characteristic features of coherent structures growing to the boundary layer. In the PIV measurement, it is difficult to calculate the friction velocity near the wall region due to laser deflection and uncertainty so that Clauser fitting method at the logarithmic region was adopted to compute the friction velocity and compared with the one directly measured by the dynamometer. With changing the free-stream velocity from 0.5 m/s to 1.0 m/s, the activity of coherent structures in the logarithmic region was increased over three times in terms of Reynolds stress. The flow field was separated by Variable Interval Time Averaging (VITA) technique into the weak and the strong structure case depending on the existence large coherent structures in order to validate its effectiveness. The stream-wise velocity fluctuation was scanned through at the boundary thickness whether it had a large deviation from background flow. With coherent structures connected from near-wall to the boundary layer, mean wall shear stress was higher than that of weak structure case. Proper Orthogonal Decomposition (POD) analysis was also applied to compare the energy budget between them at each free-stream velocity.

Comparative Evaluation of Hydrological Cycle in South and North Korea using a Land Surface Model (지표수문해석모형을 이용한 남북한 수문순환 비교 평가)

  • Song, Sung-uk;Lee, Jinwook;Cho, Eunsaem;Yoo, Chulsang
    • Journal of Wetlands Research
    • /
    • v.19 no.1
    • /
    • pp.16-29
    • /
    • 2017
  • It is known that large-scale deforestation has occurred in North Korea due to economic failures since the 1990s, and this is expected to greatly change the characteristics of the hydrological cycle. In this study, hydrological cycle simulation was carried out for the period of about 30 years from 1981 to 2013 for the entire Korean peninsula using the VIC model, a land surface hydrology model. The simulation results are summarized as follow. First, the runoff ratio is 55%~70% in South Korea and 38~56% in North Korea. In particular, it is worth noting that despite the small runoff ratio, the variation is about 28% larger than the South Korea's 15%. The rate of evapotranspiration was larger than that of South Korea. That is, the rate of evapotranspiration in South Korea is 20~35% and in North Korea it is 25~46%. However, the rate of change was 21% in the case of North Korea and slightly larger than 15% in South Korea. Third, South Korea has an average of 34% in soil moisture and 27% in North Korea. However, unlike the simulated results of the runoff ratio and the evapotranspiration rate, the difference in the variation of soil moisture in South Korea and North Korea over the entire period was similar with 8%. As a result, we can confirm that the difference of hydrological cycle characteristics between South Korea and North Korea has been increased since the 1990s, when the forest destruction of North Korea became serious. In the case of South Korea, there is little difference in the hydrological cycle characteristics. In North Korea, however, there is a distinct difference, which is also a result reflecting the difference in the effects of forest destruction.

A Study on Evaluation System of River Levee Safety Map to Improve Maintenance Efficiency and Disaster Responsiveness (하천제방의 유지관리 효율성 및 재해 대응성 향상을 위한 하천제방 안전도맵 평가체계 연구)

  • Kim, Jin-Man;Moon, In-Jong;Yoon, Kwang-Seok;Kim, Soo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.20-29
    • /
    • 2018
  • Owing to the changing climate and recent flood events, flood damage caused by river levee collapse and overflow is on the rise in Korea, making it necessary to enhance river levee maintenance technologies to deal with various flood damage scenarios. This paper proposes the evaluation system of a river-levee safety map to improve maintenance efficiency and disaster responsiveness. A river-levee safety map, indicating sliding, piping, visual inspection, scouring, and safety index of a levee fill material on a GIS map will enable the dangerous zone to be identified visually and the development of proactive measures to deal with it. This will maximize the river-levee maintenance efficiency, which is a break from traditional practice in that restoration measures are taken only after the damage has occurred. This study includes scouring and levee fill material in addition to previously-proposed sliding, piping and visual inspections. The research activities conducted in the study include 1) categorization of scouring and levee fill material based on document and data examination, 2) evaluation of sliding and piping at 5 locations on the left levee in the Nam river according to the duration time of the flood water level, and 3) evaluation of the characteristics of scouring and levee fill material at 9 locations on the left/right levee in the Nam River. The river levee safety map proposed in this study would be more useful and practical but further study on the manual for river management organization, repair and reinforcement methods, and budget is required.

Seasonal Variation of Surface Sediments and Accumulation Rate on the Intertidal Flats in Hampyong Bay, Southwestern Coast of Korea (함평만 조간대의 표층퇴적물과 집적률의 계절변화)

  • Ryu, Sang-Ock;You, Hoan-Su;Lee, Jong-Deock
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Grain-size distribution and accumulation rate of surface sediments on the tidal flats in Hampyong Bay, southwestern coast of Korea, were investigated in a sequential interval of 2 months for the period of 27 months (1994. 10~1996. 12). Seasonal variation of grain-size distribution is prevalent on the Shimock tidal flat in the southern side of the innerbay, rather than the Anarc tidal flat in the northern side around the baymouth. This variation, in particular, more distinctive in the areas around the both high and low tide water levels. The Shimock tidal flat shows typical seasonal variation of sedimentary processes, expected under monsoonal climate. Deposition of tine-grained sediments in summer dominates over erosion in winter, resulting in an annual accumulation rate of 3.7 mm/yr. In contrast, sedimentary processes on the Anarc tidal flat is abnormal that have experienced slight deposition of fine-grained sediments in the winter and severe erosion in the summer time, showing a negative annual accumulation rate of -49.6 mm/yr. Erosional processes in this area is interpreted due mainly to change of strength and direction of tidal currents, caused by the artificial construction of dyke for reclamation in the mid-tidal flat. As a result, It is immoderate to conclude whether sedimentary processes of Hampyong Bay is erosional or depositional at current situation. Further studies on sedimentary budget at the entrance to the bay are needed.

  • PDF