• Title/Summary/Keyword: Water blocking effect

Search Result 106, Processing Time 0.022 seconds

Water-blocking Asphyxia of N95 Medical Respirator During Hot Environment Work Tasks With Whole-body Enclosed Anti-bioaerosol Suit

  • Jintuo Zhu;Qijun Jiang;Yuxuan Ye;Xinjian He;Jiang Shao;Xinyu Li;Xijie Zhao; Huan Xu;Qi Hu
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.457-466
    • /
    • 2023
  • Background: During hot environment work tasks with whole-body enclosed anti-bioaerosol suit, the combined effect of heavy sweating and exhaled hot humid air may cause the N95 medical respirator to saturate with water/sweat (i.e., water-blocking). Methods: 32 young male subjects with different body mass indexes (BMI) in whole-body protection (N95 medical respirator + one-piece protective suit + head covering + protective face screen + gloves + shoe covers) were asked to simulate waste collecting from each isolated room in a seven-story building at 27-28℃, and the weight, inhalation resistance (Rf), and aerosol penetration of the respirator before worn and after water-blocking were analyzed. Results: All subjects reported water-blocking asphyxia of the N95 respirators within 36-67 min of the task. When water-blocking occurred, the Rf and 10-200 nm total aerosol penetration (Pt) of the respirators reached up to 1270-1810 Pa and 17.3-23.3%, respectively, which were 10 and 8 times of that before wearing. The most penetration particle size of the respirators increased from 49-65 nm before worn to 115-154 nm under water-blocking condition, and the corresponding maximum size-dependent aerosol penetration increased from 2.5-3.5% to 20-27%. With the increase of BMI, the water-blocking occurrence time firstly increased then reduced, while the Rf, Pt, and absorbed water all increased significantly. Conclusions: This study reveals respirator water-blocking and its serious negative impacts on respiratory protection. When performing moderate-to-high-load tasks with whole-body protection in a hot environment, it is recommended that respirator be replaced with a new one at least every hour to avoid water-blocking asphyxia.

The flow of $CO_{2}$ and $N_{2}$ gases through Asymmetric polytherimide Membrane

  • Park, You-In;Lee, Kew-Ho
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.09a
    • /
    • pp.73-85
    • /
    • 1995
  • The asymmetric hollow fiber membranes were prepared by the wet spining of polyetherimide dope solution and the effect of hollow fiber structures on the permeation characteristics of carbon dioxide and nitrogen gases through these membrane were investigated. As the concentration of the $\gamma$-butyrolactone (GBL) in dope solution, acting as a swelling agent was increased, the structure of hollow fiber was changed from the finger to sponge type. The permeabilities of gases (CO$_{2}$, N$_{2}$) through these membrane were measured over the wide range of pressure under different temperature. The effect of water vapor on the permeabilities of gases was also investigated. The measured permeabilities showed the different characteristics depending on the structure of membranes. It was found that the flow through the pores were dominant over the polymers matrix. Blocking effect by water vapor in the pores of skin layer greatly improved the ideal separation factor of carbon dioxide/nitrogen.

  • PDF

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

The Effect of Chemical Backwash on Filtration Performance of Batch Membrane Filtration System (회분식 막여과 시스템에서 약품역세가 여과성능에 미치는 영향)

  • Kim, Kwan Yeop;Lee, Eui Jong;Kwon, Jin Sub;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.855-864
    • /
    • 2009
  • The main object of this work was to determine the influence of periodic chemical backwash on filtration resistance in membrane filtration system. In this work Hermia's models were used to investigate the fouling mechanisms involved in the microfiltration of $0.45{\mu}m$ filtered sewage feed. Batch microfiltration experiments were performed at transmembrane pressure 0.4 bar and different feed SCOD concentration (9~67 mgSCOD/L). The results showed that the best fit to experimental data corresponded to the intermediate blocking model followed by the standard and complete blocking model for all the experimental conditions tested. From the simulation results of filtration performance, it was found that in order to maintain sustainable operation of membrane filtration system, irreversible foulant component accumulated continuously on membrane surface and/or pore must be effectively removed. In addition, it was verified that periodic chemical backwash using NaOCl or NaOH effectively improved filtration performance of membrane.

Effects of Light-Blocking on Water Quality and Phytoplankton Community in Lake Juam (주암호에서 수질과 식물플랑크톤 군집에 미치는 광 차단효과)

  • Lee, Yong-Woon;Lee, Hak-Young
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.150-160
    • /
    • 2003
  • This study was carried out to assess inhibitory effects of light-blocking on water quality and phytoplankton community in Lake Juam from August to November 2000. The values of water temperature, DO, TN, $NO_3-N$, $NH_4-N$, TP, DIP, COD, SS and PH did not show clear differences between inside and outside light-blocked areas. Concentrations of Chl-a decreased -6.6${\sim}$40% (mean 14.7%) from inside of the light-blocked area by light blocking. During the study, 55 species of phytoplankton were indentified, and the dominant species were Microcystis aeruginosa, Aulacoseira granulata, Peridinium sp., Synedra spp., Oscillatoria sp., Fragilaria construens, and Trachelomonas sp. The successional pattern of dominant phytoplankton was diatoms (July)${\to}$ diatoms/cyanophytes (August-September)${\to}$cyanophytes (October)${\to}$ diatoms (October-November). The standing crop of phytoplankton showed maximum density in 22 September with $1.1{\times}10^4$cells/L, and minimum in 25 October with $4.7{\times}10^3$ cells/L. The decreasing efficiency of standing crop by light-blocking was 8${\sim}$38% (mean 19.9%). Through this study we found that blocking light seems to have a decreasing effect on the density of phytoplankton.

Waterbody Detection from Sentinel-2 Images Using NDWI: A Case of Hwanggang Dam in North Korea (Sentinel-2 기반 NDWI를 이용한 수체 탐지 연구: 북한 황강댐을 사례로)

  • Kye, Changwoo;Shin, Dae-Kyu;Yi, Jonghyuk;Kim, Jingyeom
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1207-1214
    • /
    • 2021
  • In thisletter, we developed technology which can exclude effect of cloudsto perform remote waterbody detection based on Sentinel-2 optical satellite imagery to calculate the area of ungauged reservoirs and applied to the Hwanggang dam reservoir, a representative ungauged reservoir, to verify usability. The remote waterbody detection technology calculates the cloud blocking ratio by comparing the cloud boundary in the Sentinel-2 imagery and the reservoir boundary first. Next, itselects data whose cloud blocking ratio does not exceed a specific value and calculates NDWI (Normalized Difference Water Index) with selected imagery. In last, it calculatesthe area of the reservoir by counting the number of grids which have NDWI value considered as waterbody within the boundary of the target reservoir and correcting with cloud blocking ratio. To determine cloud blocking ratio threshold forselecting image, we performed the area calculation of Hwanggang dam reservoir from July 2018 to October 2021. As a result, when the cloud blocking ratio threshold wasset 10%, we confirmed that the result with large error due to clouds were filtered well and obtained 114 results that can show changes in Hwanggang dam reservoir area among 220 images.

Performance Evaluation of Microorganisms Immobilized Reactive Capping Materials on Elution Blocking of Organic, Nitrogen, and Phosphorus Compounds (미생물이 고정화된 반응성 피복재의 유기물, 질소 및 인 용출 차단성능 평가)

  • Park, Hyungjin;Kim, Young-Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.409-415
    • /
    • 2017
  • This study aims to evaluate the effect of capping materials on blocking pollutant elution from contaminated sediment to water body. Experiments were carried out under conditions in which the elution rate was intensified artificially using compost with high concentration of organic compound and nutrient salts instead of sediments. Activated carbon (AC), modified activated carbon (MAC), P. putida immobilized activated carbon (PBAC) and effective microorganisms immobilized activated carbon (EBAC) were used as capping materials. Zeolite (ZT) and two kinds of commercially available microorganisms immobilized zeolite products (ZC, ZN) were used for comparison experiment. The elution rate of organic compound, nitrogen and phosphorus were compared with that of control experiment. The experiments were conducted for 56 days. Concentrations of chemical oxygen demand, total nitrogen, and total phosphorus were measured to use the comparison of release rate of organic compound, nitrogen and phosphorus. From the experimental results, AC based materials showed better performance to block the elution of organic compound and nitrogen than ZT based materials. Although ZT based materials were more effective than AC and PBAC to block phosphorus, MAC and EBAC showed the best performance of phosphorus elution blocking among the all candidate materials. In conclusion, EBAC is considered as the most effective capping materials, because organic compound, nitrogen and phosphorus will be degraded continuously by EM in the long term.

Analysis on the Bluegill Blocking Effects using Bubbles (버블을 이용한 파랑볼우럭 차단 효과 분석)

  • Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.390-397
    • /
    • 2017
  • The introduction of exotic fish species may reduce the number of native fish species and disturb the aquatic ecosystem. Therefore, measures to block and manage fish species are required. Accordingly, a fish species blocking system using bubbles was developed in this study to block exotic fish species. An experimental channel was produced and the possibility of blocking such exotic fish species was evaluated. The bubble generator is a system that produces a bubble curtain by generating air with an air compressor that blocks fish species. Bluegill, which is an exotic fish species in the country, was tested with this generator. The size of bluegill was between 0.10 m and 0.15 m and the depth of water was maintained at 0.70 m. The flow velocity of the experiment channel was classified into 3 levels (0.20 m/s, 0.10 m/s, and 0.05 m/s) considering the natatorial ability of the fish species. The results revealed that 70.07% of bluegill showed movements to swim upstream before applying the bubble, but it is considered that the ascending rate would be higher given that the fish species thinks downstream is a habitat and showed almost no movement. However, when the blocking facility was installed, most fish species showed movements to return to the downstream again by the bubble curtain, indicating a very high blocking effect. In particular, when the generating bubble was terminated, the fish species swam back to the upstream area very soon, so the fish species blocking effect using the bubble was excellent.

Evaluation of the Water Quality Changes in Agricultural Reservoir Covered with Floating Photovoltaic Solar-Tracking Systems (수상 회전식 태양광 발전시설 설치에 따른 농업용 저수지의 수질변화 평가)

  • Lee, Inju;Joo, Jin Chul;Lee, Chang Sin;Kim, Ga Yeong;Woo, Do Young;Kim, Jae Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.255-264
    • /
    • 2017
  • To evaluate the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking systems, the water quality variations with time and depth were monitored on both six sites for light blocking zones and four sites for light penetration zones after the installation of floating photovoltaic solar-tracking systems in Geumgwang reservoir at Anseong-si, Kyeonggi province. For one year with 16 monitoring events, water quality parameters [i.e., water temperature, pH, dissolved oxygen (DO), chlorophyll-a (Chl-a), and blue-green algae (BGA)] were monitored at depths of 0.3 m, 1 m, 3 m, and 5 m, while chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored at depths of 0.3 m. Statistically, the difference in all water quality parameters was not significantly different (p > 0.05) at the level of significance of 0.05. Based on these results, the water quality data from light blocking zones (site 1~6) and light penetration zones (site 7~10) were clustered, and were compared with time and depth. As a result, the difference in water temperature, pH, DO, COD, TN, TP, Chl-a, and BGA between light blocking zones and light penetration zones was not significant (p > 0.05) with different time and depth. For Chl-a and BGA, some data from light blocking zones greater than light penetration zones were temporary observed due to the severe drought, low water storage rate, and over growth of periphyton. However, this temporal phenomenon did not impact the water quality. Considering the small water surface area (${\leq}0.5%$) covered by floating photovoltaic solar-tracking systems, the mixing effect of whole Geumgwang reservoir caused by Ekman current and continuous discharge were more dominant than the effect of reduced solar irradiance. Further study is warranted to monitor the changes in water quality and aquatic ecosystems with greater water surface area covered by floating photovoltaic solar-tracking systems for a long time.

Citrus unshiu Water Extract Inhibits Trypsin-induced $TNF-{\alpha}$ and Tryptase Productions by Blocking the ERK Phosphorylation and Trypsin Activity

  • Kang, Ok-Hwa;Kim, Dae-Ki;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • v.10 no.5
    • /
    • pp.211-216
    • /
    • 2004
  • Citrus unshiu (Rutaceae) has long been known as an anti-inflammatory and anti-allergic agent. In the present study, the inhibitory effect of CUWE (Citus unshiu water extract) on the production of $TNF-{\alpha}$ and tryptase was examined. In addition, a possible mechanism for the inhibition of trypsin-stimulated human leukemic mast cell-1 (HMC- 1 ) activation was determined. To do so, $TNF-{\alpha}$ production from the HMC-1 cells that were stimulated by trypsin (100 nM) in the presence or absence of CUWE $(10,\;100,\;and\;100\;{\mu}g/ml)$ was measured by enzyme-linked immunosorbent assay (ELISA) and reverse transcription-PCR. The tryptase production was evaluated by reverse transcription-PCR. Extracellular signal-regulated kinase (ERK) activation was analyzed by Western blot. Trypsin activity was measured by using Bz-DL-Arg-p-nitroanilide (BAPNA) as substrate. Results showed that the CUWE inhibited production of both $TNF-{\alpha}$ and tryptase from the trypsin-stimulated HMC-1 in a dose-dependent manner. The CUWE a1so inhibited the ERK phosphorylation and trysin activity. These results indicate that the CUWE had an inhibitory effect on $TNF-{\alpha}$ and the tryptase productions by blocking the ERK phosphorylation and trypsin activity.