• Title/Summary/Keyword: Water balance model

Search Result 494, Processing Time 0.024 seconds

Verification of the Wind-driven Transport in the North Pacific Subtropical Gyre using Gridded Wind-Stress Products Constructed by Scatterometer Data

  • Aoki, Kunihiro;Kutsuwada, Kunio
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.418-421
    • /
    • 2007
  • Using gridded wind-stress products constructed by satellite scatterometers (ERS-1, 2 and QSCAT) data and those by numerical weather prediction(NWP) model(NCEP-reanalysis), we estimate wind-driven transports of the North Pacific subtropical gyre, and compare them in the central portion of the gyre (around 300 N) with geostrophic transports calculated from historical hydrographic data (World Ocean Database 2005). Even if there are some discrepancies between the wind-driven transports by the QSCAT and NCEP products, they are both in good agreement with the geostrophic transports within reasonable errors, except for the regional difference in the eastern part of the zone. The difference in the eastern part is characterized by an anticyclonic deviation of the geostrophic transport resulting from an anti-cyclonic anomalous flow in the surface layer, suggesting that it is related to the Eastern Gyral produced by the thermohaline process associated with the formation of the Eastern Subtropical Mode Water. We also examine the consistency of the Sverdrup transports estimated from these products by comparing them with the transports of the western boundary current, namely the Kuroshio regions, in previous studies. The net southward transport, based on the sum of the Sverdrup transports by QSCAT and NCEP products and the thermohaline transport, agrees well with the net northward transport of the western boundary current, namely the Kuroshio transport. From these results, it is concluded that the Sverdrup balance can hold in the North Pacific subtropical gyre.

  • PDF

Application of Flow Network Models of SINDA/FLUIN $T^{TM}$ to a Nuclear Power Plant System Thermal Hydraulic Code

  • Chung, Ji-Bum;Park, Jong-Woon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.641-646
    • /
    • 1998
  • In order to enhance the dynamic and interactive simulation capability of a system thermal hydraulic code for nuclear power plant, applicability of flow network models in SINDA/FLUIN $T^{™}$ has been tested by modeling feedwater system and coupling to DSNP which is one of a system thermal hydraulic simulation code for a pressurized heavy water reactor. The feedwater system is selected since it is one of the most important balance of plant systems with a potential to greatly affect the behavior of nuclear steam supply system. The flow network model of this feedwater system consists of condenser, condensate pumps, low and high pressure heaters, deaerator, feedwater pumps, and control valves. This complicated flow network is modeled and coupled to DSNP and it is tested for several normal and abnormal transient conditions such turbine load maneuvering, turbine trip, and loss of class IV power. The results show reasonable behavior of the coupled code and also gives a good dynamic and interactive simulation capabilities for the several mild transient conditions. It has been found that coupling system thermal hydraulic code with a flow network code is a proper way of upgrading simulation capability of DSNP to mature nuclear plant analyzer (NPA).

  • PDF

Optimal Operation Condition of Pressurized Methanol Fuel Processor for Underwater Environment (수중환경용 가압형 메탄올 연료프로세서의 최적운전 연구)

  • JI, HYUNJIN;CHOI, EUNYEONG;LEE, JUNGHUN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.485-493
    • /
    • 2016
  • Recently submarine and unmanned underwater vehicle (UUV) are equipped with a fuel cell system as an air independent propulsion system. Methanol fuel processor can efficiently supply the hydrogen to the fuel cell system to improve the ability to dive. This study investigated the optimal conditions of the methanol fuel processor that may be used in the closed environment. For this purpose, the numerical model based on Gibbs minimization equation was established for steam reformer and three exhaust gas burners. After simulating the characteristics of steam reformer according to the steam-to-carbon ratio (SCR) and the pressure change, the SCR condition was able to narrow down to 1.1 to 1.5. Considering water consumption and the amount of heat recovered from three burners, the optimum condition of the SCR can be determined to be 1.5. Nevertheless, the additional heat supply is required to satisfy the heat balance of the methanol fuel processor in the SCR=1.5. In other to obtain additional amount of heat, the combustion of methanol is better than the increased of SCR in terms of system design.

Rossby Waves and Beta Gyre Associated with Tropical Cyclone-scale Barotropic Vortex on the Sphere

  • Nam, Ye-Jin;Cheong, Hyeong-Bin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.344-355
    • /
    • 2020
  • Tropical cyclone scale vortices and associated Rossby waves were investigated numerically using high-resolution barotropic models on the global domain. The equations of the barotropic model were discretized using the spectral transform method with the spherical harmonics function as orthogonal basis. The initial condition of the vortex was specified as an axisymmetric flow in the gradient wind balance, and four types of basic zonal states were employed. Vortex tracks showed similar patterns as those on the beta-plane but exhibited more eastward displacement as they moved northward. The zonal-mean flow appeared to control not only the west-east translation but also the meridional translation of the vortex. Such a meridional influence was revealed to be associated with the beta gyre and the Rossby wave, which are formed around the vortex due to the beta effect. In the case of the basic zonal state of climatological mean, the meridional translation speed reached the maximum value when the vortex underwent recurving.

A Literature Review for Approach of Oriental Nursing (한방간호접근을 위한 이론적 고찰)

  • 강현숙
    • Journal of Korean Academy of Nursing
    • /
    • v.23 no.1
    • /
    • pp.118-129
    • /
    • 1993
  • In order to approach the nursing care of clients who are using oriental medicine and to understand the perception of the client who uses oriental medicine practices and the need to develop a model of nursing related to oriental medicine it is important to examine the major nursing concepts as they are found in oriental medicine and as they are differently defined according to the basic thought, theory and philosophical perspectives between East and West. Oriental medicine developed based on Sung Confucianism the teachings of Chut-zu, especially Tai-Chi-Tu Shuo and energy thought which are similar to traditional Korean Sasang Constitutional medicine. The basic theory on which oriental medicine is build is the theory of the five elements of Yin / Eum-Yang Theory(cosmic dual forces) and Meridian Theory. The most important attribute of Yin Yang is the concept of duality, confrontation and dependence, within Yin Yang but which do not exist separately. That is, the universe is a vast, indivisible entity within which all things exist in harmonious interdependence and balance. Harmony is achieved only when the two primorial forces, Yin and Yang, are brought into perfect balance. Each is contained within the other and there is a continuing interchange between the two. This also applies to the human body including human health which is defined as balanced harmony. The most universal connection of Yin and Yang is found in the universe where the five elements of life, fire, water, earth, wood and metal can be explained as having either Yin or Yang and therefore being in a state of connectedness but systematically circulating between the two, that is essentalilly one (the control of the unified ) or as coexistant poles of individual wholes (the pluralism of Yin Yang Theory) so that it is all unified(balanced) in the Great Absoulte. Human beings also maintain a balance of Yin and Yang in the five elements and this relationship is very important in approaching ·oriental medicine, The meridians are the channels in the body through which the life force flow throughout the body. In oriental medicine the meridians are seen as the railroad, the acupuncture points on the meridians as the stations and energy as the train. In the normal healthy organism, all are maintained in balance and in a contiuous circulation of energy. illness is the result of the energy flow becoming disarranged. Although practitioners of oriental medicine approach the client differently than do practitioners of Western medicine and their method of examining the patient is different, the basic objectives of the examination are the same for practitioners of both types of medicine. Therefore if each could be used to supplement the defiencies in the other and achieve a harmonious cooperation between the two, a higher level of care which is culturally appropriate to korean culture could be achieved. The traditional korean concept of health is a naturalistic view which emphasizes being in harmony with nature. Any manifestation of disease is considered a sign that the body is in a state of disequilibrium and is thus no longer in harmony with the universe. The wholistic view of the world held by practitioners of oriental medicine can be used by nursing in the development of a world view of nursing in which the human being is seen within the macrocosm as part of the natural phenomenon of the universe and but also as a microcosm of the universe, a universe which is a vast and indivisible entity within which all things exist in harmonious interdependence and balance. Interaction between human beings and their environment and the relationship of this interaction to health are concepts that are also found in nursing. Nursing views human brings, not as an accumulation of separate cells and organs but, as unified wholes interacted in very close relationship nth their environment. Nursing also maintains a view of human beings in which emphasis is placed on the role of the mind in explaining the concepts of harmony and balance in health. Although there are differences between oriental medicine and nursing in approaches to clients, the basic point of view and philosophy have many fundamental similarites. An understanding of the basic thought and philosophy of oriental medicine if applied to nursing, would allow for the development, not only of nursing related to oriental medicine, but of a nursing theory appropriate to the korean context.

  • PDF

Large Scale SWAT Watershed Modeling Considering Multi-purpose Dams and Multi-function Weirs Operation - For Namhan River Basin - (다목적 댐 및 다기능 보 운영을 고려한 대유역 SWAT 모형 구축기법 연구 - 남한강 유역을 대상으로 -)

  • Ahn, So Ra;Lee, Ji Wan;Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.21-35
    • /
    • 2016
  • This study is to evaluate the applicability of SWAT (Soil and Water Assessment Tool) model for multi-purpose dams and multi-function weirs operation in Namhan river basin ($12,577km^2$) of South Korea. The SWAT was calibrated (2005 ~ 2009) and validated (2010 ~ 2014) considering of 4 multi-purpose dams and 3 multi-function weirs using daily observed dam inflow and storage, evapotranspiration, soil moisture, and groundwater level data. Firstly, the dam inflow was calibrated by the five steps; (step 1) the physical rate between total runoff and evapotranspiration was controlled by ESCO, (step 2) the peak runoff was calibrated by CN, OV_N, and CH_N, (step 3) the baseflow was calibrated by GW_DELAY, (step 4) the recession curve of baseflow was calibrated by ALPHA_BF, (step 5) the flux between lateral flow and return flow was controlled by SOL_AWC and SOL_K, and (step 6) the flux between reevaporation and return flow was controlled by REVAPMN and GW_REVAP. Secondly, for the storage water level calibration, the SWAT emergency and principle spillway were applied for water level from design flood level to restricted water level for dam and from maximum to management water level for weir respectively. Finally, the parameters for evapotranspiration (ESCO), soil water (SOL_AWC) and groundwater level fluctuation (GWQMN, ALPHA_BF) were repeatedly adjusted by trial error method. For the dam inflow, the determination coefficient $R^2$ was above 0.80. The average Nash-Sutcliffe efficiency (NSE) was from 0.59 to 0.88 and the RMSE was from 3.3 mm/day to 8.6 mm/day respectively. For the water balance performance, the PBIAS was between 9.4 and 21.4 %. For the dam storage volume, the $R^2$ was above 0.63 and the PBIAS was between 6.3 and 13.5 % respectively. The average $R^2$ for evapotranspiration and soil moisture at CM (Cheongmicheon) site was 0.72 and 0.78, and the average $R^2$ for groundwater level was 0.59 and 0.60 at 2 YP (Yangpyeong) sites.

Estimation of Water Temperature by Heat Balance Method in Paddy Field. (열수지법(熱收支法)에 의한 벼논의 수온추정(水溫推定))

  • Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jung-Nam;Takami, Shinich
    • Korean Journal of Environmental Agriculture
    • /
    • v.8 no.1
    • /
    • pp.30-36
    • /
    • 1989
  • To determine irrigated water temperature under the rice plant canopy, micrometeorological elements air temperature, relative humidity, water temperature, solar radiation, and the rice leaf area index the rice plant canopywere measured. Water temperature under the canopy was also estimated from these data. The results are as follows ; 1. Maximum and minimum temperatures of water in the paddy field were higher about $1-2^{\circ}C$ than those of air temperature. 2. Mean water temperature under the canopy became lower than mean air temperature when the leaf area indices were greater than 4, because of decreased light penetration rates 3. Penetration amounts of net radiation under the canopy can be estimated by an exponential equation 4. Estimated water temperatures under the canopy by a combination method model was adaptable in Suweon, a plain area, but its accuracy was lower in Jinbu, an alpine area.

  • PDF

Estimation of spatial evapotranspiration using Terra MODIS satellite image and SEBAL model in mixed forest and rice paddy area (SEBAL 모형과 Terra MODIS 영상을 이용한 혼효림, 논 지역에서의 공간증발산량 산정 연구)

  • Lee, Yong Gwan;Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.3
    • /
    • pp.227-239
    • /
    • 2016
  • This study is to estimate Surface Energy Balance Algorithm for Land (SEBAL) daily spatial evapotranspiration (ET) comparing with eddy covariance flux tower ET in Seolmacheon mixed forest (SMK) and Cheongmicheon rice paddy (CFK). The SEBAL input data of Albedo, Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI) from Terra MODIS products and the meteorological data of wind speed, and solar radiation were prepared for 2 years (2012-2013). For the annual average flux tower ET of 302.8 mm in SMK and 482.0 mm in CFK, the SEBAL ETs were 183.3 mm and 371.5 mm respectively. The determination coefficients ($R^2$) of SEBAL ET versus flux tower ET for total periods were 0.54 in SMK and 0.79 in CFK respectively. The main reason of SEBAL ET underestimation for both sites was from the determination of hot pixel and cold pixel of the day and affected to the overestimation of sensible heat flux.

Robust Diagnostic World Ocean Circulation with Half-Degree Resolution (1/2$^{\circ}$해상도의 진단적 전구 해수순환모형 연구)

  • 최병호;웨이체첸;팡구오홍;최영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2001
  • Global robust diagnostic models are established based on MOM of GFDL to study the circulation in the world ocean. The horizontal grid sizes 1/2 degree, and the vertical water column is divided into 21 levels. The hydrographic data are taken from Levitus et al.(1994) and the wind stress from Hellerman and Rosenstein (1983). Based on the model results the horizontal volume, heat and salt transports across some representative sections are calculated. The preliminary results show that Though the cross-equator volume transports in the Atlantic, Indian and Pacific Oceans are all small, the heat transports across equator in the Atlantic are northward. This is clearly a result of the southward flow of the North Atlantic Deep Water and the northward compensating warm flow in the upper layer. The annual mean of the cross-equator heat transport in the Pacific Ocean from the present model is significantly lower than that calculated by Philander et at. (1987). This might indicate the importance of the Indonesian Throughflow in the heat transport in the Pacific Ocean. Our calculation shows that the heat transport through the Indonesian Archipelago is 0.5 PW, which is comparable with the poleward heat transport in the North Atlantic and Pacific Oceans. The difference in heat transports across the sections 5 and 6 demonstrates the important role of the Agulhas Current in the heat balance of the world ocean.

  • PDF

Preparation of Coconut Oil in Water Emulsions Using Tween-Span Type Mixed Surfactant : Optimization of CCD-RSM (Tween-Span계 혼합계면활성제를 이용한 Coconut Oil 원료 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화)

  • Yoo, Bong-Ho;Zhu, Kaiyang;Zuo, Chengliang;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.19-24
    • /
    • 2020
  • In this study, the O/W emulsions prepared from coconut oil and the non-ionic mixed surfactant as Tween-Span system were evaluated and optimized in order to upgrade the stability of manufactured emulsions. For the optimization, a central composite design model-response surface methodology, so called as CCD-RSM was implemented. Quantitative factors were the hydrophile-lipophilie balance (HLB), amount of non-ionic mixed surfactant and emulsification speed while experimental results included the mean droplet size (MDS), emulsion stability index (ESI), and thermal instability index (TII). Optimized values of the HLB, amount of non-ionic mixed surfactant and emulsification speed obtained from CCD-RSM were 9.1, 8.7 wt.%, and 6,200.8 rpm, respectively. Expected experimental results for MDS, ESI, and TII under the optimized experimental condition were 151.0 nm, 99.86, and 3.17%, respectively. The average error from actual experiments which established for validation of the conclusions was lower than 3.5%. Therefore, a highly favorable level could be obtained when the optimized CCD-RSM was applied to manufacturing the O/W emulsion in this study.