• 제목/요약/키워드: Water Treatment Plant

검색결과 2,073건 처리시간 0.026초

국내 정수장 고도정수처리 공정에서 공정별 처리효율 조사 (Investigation of Treatment Efficiency for Advanced Processes of Water Treatment Plants in Korea)

  • 문성민;최승일;손진식;윤제용
    • 상하수도학회지
    • /
    • 제19권3호
    • /
    • pp.323-329
    • /
    • 2005
  • Advanced processes such as ozonation or activated carbon filtration (ACF) in water treatment plants have been used in Korea since 1994. At present, seventeen drinking water treatment plants are currently operating. This survey compares the treatment performance of advanced processes in eight plants which have comparable water quality data. The three parameters (DOC, $UV_{254}$, and $KMnO_4$ consumption) of water quality were selected as an indicator of treatment efficiency. The treatment efficiency of ozonation and ACF processes was found to vary with large deviations in each plant. Treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption by post ozonation ranged from 3 to 11%, 6 to 33%, and 12 to 28% respectively. On the other hand, for ACF, treatment efficiency of DOC, $UV_{254}$, and $KMnO_4$ consumption ranged from 7 to 38%, 8 to 48%, and 16 to 66% respectively. These large deviations indicate the advanced processes of water treatment plants to be further optimized.

Post-Chlorination Process Control based on Flow Prediction by Time Series Neural Network in Water Treatment Plant

  • Lee, HoHyun;Shin, GangWook;Hong, SungTaek;Choi, JongWoong;Chun, MyungGeun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권3호
    • /
    • pp.197-207
    • /
    • 2016
  • It is very important to maintain a constant chlorine concentration in the post chlorination process, which is the final step in the water treatment process (hereafter WTP) before servicing water to citizens. Even though a flow meter between the filtration basin and clear well must be installed for the post chlorination process, it is not easy to install owing to poor installation conditions. In such a case, a raw water flow meter has been used as an alternative and has led to dosage errors due to detention time. Therefore, the inlet flow to the clear well is estimated by a time series neural network for the plant without a measurement value, a new residual chlorine meter is installed in the inlet of the clear well to decrease the control period, and the proposed modeling and controller to analyze the chlorine concentration change in the well is a neuro fuzzy algorithm and cascade method. The proposed algorithm led to post chlorination and chlorination improvements of 1.75 times and 1.96 times respectively when it was applied to an operating WTP. As a result, a hygienically safer drinking water is supplied with preemptive response for the time delay and inherent characteristics of the disinfection process.

Ultraviolet-activated peracetic acid treatment-enhanced Arabidopsis defense against Pseudomonas syringae pv. tomato DC3000

  • Min Cho;Se-Ri Kim;Injun Hwang;Kangmin Kim
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.215-224
    • /
    • 2023
  • Disinfecting water containing pathogenic microbes is crucial to the food safety of fresh green agricultural products. The UV-activated peracetic acid (UV/PAA) treatment process is an efficient advanced oxidation process (AOP) and a versatile approach to disinfecting waterborne pathogens. However, its effects on plant growth remain largely unknown. This study found that low-dose UV/PAA treatment induced moderate oxidative stress but enhanced the innate immunity of Arabidopsis against Pseudomonas syringae pv. (Pst) DC3000. When applied as water sources, 5- and 10-ppm UV/PAA treatments slightly reduced biomass and root elongation in Arabidopsis seedlings grown under hydroponic conditions. Meanwhile, treatments of the same doses enhanced defense against Pst DC3000 infection in leaves. Accumulation of hydrogen peroxide and callose increased in UV/PAA-treated Arabidopsis samples, and during the post-infection period, UV/PAA-treated seedlings maintained vegetative growth, whereas untreated seedlings showed severe growth retardation. Regarding molecular aspects, priming-related defense marker genes were rapidly and markedly upregulated in UV/PAA-treated Arabidopsis samples. Conclusively, UV/PAA treatment is an efficient AOP for disinfecting water and protecting plants against secondary pathogenic attacks.

A study on the diatomaceous earth filtration of recycling basin supernatant in the water treatment plant

  • Shin, Dae-Yewn;Park, Young-Ho;Moon, Ok-Ran;Park, Hymg-Il;Chung, Kyung-Hoon;Chin-Surk ko
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2003년도 Challenges and Achievements in Environmental Health
    • /
    • pp.94-97
    • /
    • 2003
  • This study performed the research about the recycling basin supernatant by pre-coat filtration in the D water treatment plant at Gwangju. Choice the prompt conditions with diatomaceous earth filtration which makes contaminant reduced in the basin supernatant. Element disk of candle used in this experiment are pore size 10$\mu\textrm{m}$(R), 20$\mu\textrm{m}$(B) and 40$\mu\textrm{m}$(Y). Diatomaceous earth are cake pore size 3.5$\mu\textrm{m}$(A), 7$\mu\textrm{m}$(B) and 17$\mu\textrm{m}$(C). The filtrate concentrations were from 0.18 to 0.92$\mu\textrm{g}$/1 of Chlorophyll-a. And then, removal rate percentage were from 78.30 to 95.57(R-A). In addition SS 80%, CODMn32% COD 61%, T-N 10% and T-P 39% on the D water treatment plant. The R(40$\mu\textrm{m}$) C(17$\mu\textrm{m}$) process can be substituted of reusing the recycled water of recycling basin supernatant view of capacity and removal rate of filtrate.

  • PDF

전기화학적 처리에 의한 배추 절임염수 재이용 가능성 평가 (Evaluation of brine reuse on salting of chinese cabbage using electrochemical process)

  • 정희숙;이은실;한성국;한응수
    • 상하수도학회지
    • /
    • 제28권5호
    • /
    • pp.541-548
    • /
    • 2014
  • The pickling brine generated from the salting process of kimchi production is difficult to treat biologically due to very high content of salt. When pickling brine is treated and discharged, it cannot satisfy the criteria for effluent water quality in clean areas, while resources such as the salt to be recycled and the industrial water are wasted. However, sterilization by ozone, UV and photocatalyst is expensive installation costs and operating costs when considering the small kimchi manufacturers. Therefore there is a need to develop economical process. The study was conducted on the sterilization efficiency of the pickling brine using electrochemical processing. The electrochemical treatment of organic matters has advantages over conventional methods such as active carbon absorption process, chemical oxidation, and biological treatment because the response speed is faster and it does not require expensive, harmful oxidizing agents. This study were performed to examine the possibility of electrochemical treatment for the efficient processing of pickling brine and evaluated the performance of residual chlorine for the microbial sterilization.

강원 영서지역 하수처리장이 수질에 미치는 영향 (Effect of Municipal Sewage Treatment Plant on Water Quality in Western Kangwon Area)

  • 허인량;최지용;김영진;정의호
    • 한국환경보건학회지
    • /
    • 제31권4호
    • /
    • pp.235-240
    • /
    • 2005
  • The effects of municipal sewage treatment plants on the water quality and effluent loading were investigated. BOD removal rates from Wonju, Hoengseong, and Hongcheon municipal sewage treatment plants were $88.9\%,\;80.6\%,\;90.7\%$ and T-P removal rates were $47.3\%,\;56.5\%,\;71.6\%,$ respectively. Also, BOD effluent leading from WonJu, Hoengseong, and Hongcheon treatment plants were 1,520 kg/day, 75 kg/day, 55 kg/day and T-P effluent loading were 203.9 kg/day, 4.2 kg/day, 4.0 kg/day, respectively. In terms of water quality distribution by distance of flow, BOD of the Seom river rapidly rose from 1.6 mg/l to 4.0 mg/l and T-P rose from 0.034 mg/l to 0.321 mg/l. Also BOD of the Hongcheon river showed a slowly rise from 1.1 mg/l to 1.4 mg/l and T-P from 0.011 mg/l to 0.026 mg/l. In conclusion, the effects of municipal sewage treatment plants on the water quality proved that T-P was higher than BOD. Consequently, in order to improve water quality, it is necessary to adopt an advanced sewage treatment system like nutrient removal.