• Title/Summary/Keyword: Water System Dynamics

Search Result 398, Processing Time 0.027 seconds

Design of the long perforated pipe in water treatment process using CFD (전산유체역학(CFD)를 활용한 정수공정에서 길이가 긴 유공관 설계)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Bin, Jae-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2010
  • Role of the perforated pipe is to drain the water with equal pressure and velocity through the holes of perforated pipe. The perforated pipe is being used in many processes of water treatment system, however, the design parameter of perforated pipe is not standardized in korea. In this study, we have found the design parameter of perforated pipe in the water treatment system using the Computational Fluid Dynamics (CFD). The uniformity of outflow from the perforated pipe is directly affected according to area ratio(gross area of holes/surface area of the perforated pipe). In other words, the uniformity of outflow is improved as area ratio is smaller. Also, at the same area ratio, the uniformity of outflow is improved as number of holes is increase. Specially, in case of the two holes per length of pipe diameter(2/D) shows the most uniformity of outflow and the best hydraulic with the smaller pressure drop. The uniformity of outflow is aggravated and the pressure drop of pipe is decrease as length of pipe is longer. In case of that pipe length is 10m and above, the pressure drop decreased about 30% when diameter ratio is 40% with 0.2% of area ratio by comparison with 0.1% of area ratio.

Computational Fluid Dynamics Analysis for Investigation of Hydrodynamic Force and Moment of a Marine Propeller in Heave Motion (전산유체역학 해석을 통한 프로펠러의 상하동요 운동 중 유체력 특성 연구)

  • Mina Kim;Dong-Hwan Kim;Jeonghwa Seo;Myoung-Soo Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.4
    • /
    • pp.236-246
    • /
    • 2024
  • The present study aims to identify the effects of the oblique inflow and vertical acceleration on a marine propeller's hydrodynamic force and moment. Computational Fluid Dynamics analysis is performed for a rotating propeller in open water conditions with heave motion after performing validation against experiment in straightforward conditions. The oblique inflow results in a linear increase of the off-axial component of the hydrodynamic force and moment rather than the axial one. Pitch and yaw moments due to the hull motion are dominated by the heave force and the moment arm of the propeller location. Additionally, the vertical acceleration leads to a linear augmentation of off-axial hydrodynamic force and moment, implying the added mass and moment of inertia. Notably, it is found that the off-axial hydrodynamic force and moment are dominated by the oblique inflow velocity rather than the acceleration.

Molecular dynamics simulation of short peptide in DPC micelle using explicit water solvent parameters

  • Kim, Ji-Hun;Yi, Jong-Jae;Won, Hyung-Sik;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.139-143
    • /
    • 2018
  • Short antimicrobial peptide, A4W, have been studied by molecular dynamics (MD) simulation in an explicit dodecylphosphocholine (DPC) micelle. Peptide was aligned with DPC micelle and transferred new peptide-micelle coordinates within the same solvent box using specific micelle topology parameters. After initial energy minimization and equilibration, the conformation and orientation of the peptide were analyzed from trajectories obtained from the RMD (restrained molecular dynamics) or the subsequent free MD. Also, the information of solvation in the backbone and the side chain of the peptide, hydrogen bonding, and the properties of the dynamics were obtained. The results showed that the backbone residues of peptide are either solvated using water or in other case, they relate to hydrogen bonding. These properties could be a critical factor against the insertion mode of interaction. Most of the peptide-micelle interactions come from the hydrophobic interaction between the side chains of peptide and the structural interior of micelle system. The interaction of peptide-micelle, electrostatic potential and hydrogen bonding, between the terminal residues of peptide and the headgroups in micelle were observed. These interactions could be effect on the structure and flexibility of the peptide terminus.

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: seismic hazard, geotechnical and lifeline aspects

  • Pitilakis, Kyriazis D.;Anastasiadis, Anastasios I.;Kakderi, Kalliopi G.;Manakou, Maria V.;Manou, Dimitra K.;Alexoudi, Maria N.;Fotopoulou, Stavroula D.;Argyroudis, Sotiris A.;Senetakis, Kostas G.
    • Earthquakes and Structures
    • /
    • v.2 no.3
    • /
    • pp.207-232
    • /
    • 2011
  • The development of reliable earthquake mitigation plans and seismic risk management procedures can only be based on the establishment of comprehensive earthquake hazard and loss scenarios. Two cities, Grevena (Greece) and D$\ddot{u}$zce (Turkey), were used as case studies in order to apply a comprehensive methodology for the vulnerability and loss assessment of lifelines. The methodology has the following distinctive phases: detailed inventory, identification of the typology of each component and system, evaluation of the probabilistic seismic hazard, geotechnical zonation, ground response analysis and estimation of the spatial distribution of seismic motion for different seismic scenarios, vulnerability analysis of the exposed elements at risk. Estimating adequate earthquake scenarios for different mean return periods, and selecting appropriate vulnerability functions, expected damages of the water and waste water systems in D$\ddot{u}$zce and of the roadway network and waste water system of Grevena are estimated and discussed; comparisons with observed earthquake damages are also made in the case of D$\ddot{u}$zce, proving the reliability and the efficiency of the proposed methodology. The results of the present study constitute a sound basis for the development of efficient loss scenarios for lifelines and infrastructure facilities in seismic prone areas. The first part of this paper, concerning the estimation of the seismic ground motions, has been utilized in the companion paper by Kappos et al. (2010) in the same journal.

Development of for Mineral Salt Manufacturing System using Deep Sea Water (해양 심층수를 이용한 미네랄소금 제염장치 개발)

  • Kim H. J.;Shin P. K.;Moon D. H.;Jung D. H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.183-189
    • /
    • 2004
  • Deep ocean water is located in the sea deeper than 200m. At such depth the solar light does not reach, photosynthesis is not performed and nutrition salt is not consumed. Therefore, campared with surface water, Deep Sea Water contains more nutrition salt, such as nitrogen and phosphor. Moreover, it has the good balance of minerals. This Research is primary attempt for apply deep sea water to food industry. New type of mineral salt manufacturing system was developed and high levels of Ca, K, Mg detected from the salt analysis.

  • PDF

Dynamics of Environmental Policy Development in Korea : How did the Policy Windows have been opened? (한국 환경정책의 발달동인 : 정책의 창문은 어떻게 열렸는가?)

  • Rhee, Jeong-Jeon;Jeong, Hoi-Seong
    • Journal of Environmental Policy
    • /
    • v.2 no.1
    • /
    • pp.1-29
    • /
    • 2003
  • This paper examines the dynamics of environmental policy development in Korea by reviewing some of the ways on how the policy windows have been opened. There are a lot of theoretical arguments about the major factors influencing policy development or changes. Many scholars have believed that severe pollution accidents or salient environmental episodes might have been the main motivation of environmental policy development. This line of argument seems valid, especially with the water pollution control policy in Korea. Water pollution control programs had rapidly expanded along with the series of water pollution accidents in the tap water sources from the late 1980s to mid-1990s. However, regarding other major env. issues, various other factors have played more important roles in the development of the relevant policies. In case of air pollution control policy international sport events such as, 1986 Asian Games, 1988 Summer Olympics, and 2002 World Cup Competition, have contributed for the development. The municipal solid waste management policy partly owed its development to the introduction of local autonomy system in the mid-1990s. Even the foreign currency crisis occurring in December 1997 helped the policy paradigm shift from rigid supply-oriented to soft demand-oriented approaches. After closely looking at the dynamics of environmental policy development in Korea, this paper tries to identify the logical background of the observed outcomes.

  • PDF

The Radial Distribution Functions of the Scaled OSS2 Water

  • Lee, Song Hi
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.669-672
    • /
    • 2012
  • Classical molecular dynamics (MD) simulations using a scaled OSS2 potential originally derived from ab initio calculations are used to study the radial distribution functions of water. The original OSS2 water potential is shown to represent a glassy or an ice at ambient temperature, but the diffusion coefficient increases on increasing the temperature of the system or decreasing the density. This suggests scaling the OSS2 potential. The O-O, O-H, and H-H radial distribution functions and the corresponding coordination numbers for the scaled OSS2 potential, obtained by MD simulation, are in good agreement with the experiment results and calculations for the SPC/E water potential over a range of temperatures.

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

A Long Term Effect Prediction of Radioactive Waste Repository Facility in Gyeongju (경주시에 대한 중저준위 방사성폐기물처분장 건설 프로그램의 장기적 효과)

  • Oh, Young-Min;Jung, Chang-Hoon
    • Korean System Dynamics Review
    • /
    • v.9 no.2
    • /
    • pp.105-128
    • /
    • 2008
  • City of Gyeongju's referendum finally offered the long-waited low-level radioactive waste disposal site in November 2005. Gyeongju's positive decision was due to the various economic rewards and incentives the national government promised to the city. 300 billion won for an accepting bonus, the location of the headquarter building of the Korean Hydro and Nuclear Power Co., and the accelerator research center and 3.25 trillion won for supporting regional development program implementation. All of the above will affect the city's infrastructure and the citizens' economic and social lives. Population, land use, economic structure, SOC and quality of life will be affected. Some will be very positive, and some will be negative. This research project will see the future of the city and forecast the demographic, economic, physical and environmental changes of the city via computer simulation's system dynamics technique. This kind of simulation will help City of Gyeongju's what to prepare for the future. The population forecasting of the year 2046 will be 662,424 with the waste disposal site, and 327,274 without the waste disposal site in Gyeongju. The waste disposal site and regional supporting program will increase 184,246 Jobs more with 1,605 agriculture and fishery, 5,369 manufacturing shops and 27,577 shops. The population increase will bring 96,726 more houses constructed in the city. Land use will also be affected. More land will be developed. And road, water plant and waste water plant will be expanded as much. The city's financial structure will be expanded, due to the increased revenues from the waste disposal site, and property tax revenues from the middle-class employees of the company, and the high-powered scientists and technologists from the accelerator research center. All in all, the future of the city will be brighter after operating the nuclear waste disposal site inside the city.

  • PDF

Local Community Development Model Building Study after Radioactive waste disposal facility Siting on GyeongJu (방사성 페기물 처분장 입지 후 지역 변화 모델 구축)

  • Oh, Young-Min;Yu, Jae-Kook
    • Korean System Dynamics Review
    • /
    • v.7 no.1
    • /
    • pp.119-146
    • /
    • 2006
  • City of Gyeongju's referendum finally offered the long-waited low-level radioactive waste disposal site in November 2005. Gyeongju's positive decision was due to the various economic rewards and incentives the national government promised to the city. 300 million won for an accepting bonus, 8.5 billion won, annual revenue fro the entry quantity of waste into the city's disposal site, the location of the headquarter building of the Korean Hydro and Nuclear Power Co., and the accelerator research center. All of the above will affect the city's infrastructure and the citizens' economic and cultural lives. Population, land use, economic structure, environment and quality of life will be affected. Some will be very positive, and some will be positive. This research project will see the future of the city and forecast the demographic, economic, physical and environmental changes of the city via computer simulation's system dynamics technique. This kind of simulation will help City of Gyeongju's what to prepare for the future. The population forecasting of the year 2026 will be 289,069 with the waste disposal site, and 279,131 without the waste disposal site in Gyeongju. The waste disposal site and the relocation of the company headquarters and location of the accelerator research center will attract 9,938 individuals more with 511 manufacturing shops and 1944 service jobs. The population increase will bring 3,550 more houses constructed in the city. Land use will also be affected. More land will be developed. However, mad, water plant and waste water plant will not be expanded as much. The city's financial structure will be expanded, due to the increased revenues from the waste disposal site, and property tax revenues from the middle-class employees of the company, and the high-powered scientists and technologists from the accelerator research center. All in an, the future of the city will be brighter after operating the nuclear waste disposal site inside the city.

  • PDF